
Teaching Tech Together
How to design and deliver lessons that work

and build a teaching community around them.

Compiled by Greg Wilson

Copyright © 2017–18

1137017809889

ISBN 978-0-9881137-0-1
90000

Licensed under the Creative Commons - Attribution license (CC-BY-4.0).
See https://github.com/gvwilson/teachtogether.tech for the source,

and http://teachtogether.tech/ for the online version.

https://github.com/gvwilson/teachtogether.tech
http://teachtogether.tech/

For my mother, Doris Wilson,
who taught hundreds of children to read and to believe in themselves.

And for my brother Jeff, who did not live to see it finished.
“Remember, you still have a lot of good times in front of you.”

The Rules

1. Be kind: all else is details.
2. Remember that you are not your learners. . .
3. . . . that most people would rather fail than change. . .
4. . . . and that ninety percent of magic consists of knowing one extra thing.
5. Never teach alone.
6. Never hesitate to sacrifice truth for clarity.
7. Make every mistake a lesson.
8. Remember that no lesson survives first contact with learners. . .
9. . . . that every lesson is too short from the teacher’s point of view and

too long from the learner’s. . .
10. . . . and that nobody will be more excited about the lesson than you are.

Contents

Contents 7

1 Introduction 1
1.1 Who You Are . 2
1.2 What to Read Instead . 3
1.3 History . 4
1.4 Why Learn to Program? 5
1.5 Have a Code of Conduct 5
1.6 Acknowledgments . 6
1.7 Exercises . 6

I Learning 9

2 Building Mental Models 11
2.1 Are People Learning? . 13
2.2 Exercises . 16

3 Expertise and Memory 19
3.1 Concept Maps . 21
3.2 Seven Plus or Minus Two 24
3.3 Pattern Recognition . 26
3.4 Becoming an Expert . 27
3.5 Exercises . 28

4 Cognitive Load 31
4.1 Split Attention . 35
4.2 Minimal Manuals . 36
4.3 Exercises . 37

5 Individual Learning 41
5.1 Six Strategies . 42
5.2 Time Management . 46

5.3 Peer Assessment . 47
5.4 Exercises . 48

II Lesson Design 53

6 A Lesson Design Process 55
6.1 Learner Personas . 57
6.2 Learning Objectives . 58
6.3 Maintainability . 61
6.4 Exercises . 62

7 Actionable Approximations of the Truth 65
7.1 How Do Novices Program? 66
7.2 How Do Novices Debug and Test? 68
7.3 What Misconceptions Do Novices Have? 70
7.4 What Mistakes Do Novices Make? 71
7.5 What Are We Teaching Them Now? 72
7.6 Do Languages Matter? 74
7.7 Does Better Feedback Help? 78
7.8 What Else Can We Do to Help? 79
7.9 Exercises . 81

III Teaching 83

8 Teaching as a Performance Art 85
8.1 Lesson Study . 86
8.2 Giving and Getting Feedback on Teaching 87
8.3 How to Practice Performance 90
8.4 Live Coding . 91
8.5 Exercises . 97

9 In the Classroom 99
9.1 Enforce the Code of Conduct 99
9.2 Peer Instruction . 100
9.3 Teach Together . 101
9.4 Assess Prior Knowledge 103
9.5 Plan for Mixed Abilities 103
9.6 Pair Programming . 104
9.7 Take Notes. . . Together? 105
9.8 Sticky Notes . 106
9.9 Never a Blank Page . 107
9.10 Setting Up Your Learners 108

9.11 Other Teaching Practices 109
9.12 Limit Innovation . 112
9.13 Exercises . 112

10 Motivation and Demotivation 115
10.1 Authentic Tasks . 117
10.2 Demotivation . 118
10.3 Accessibility . 123
10.4 Inclusivity . 125
10.5 Exercises . 128

11 Teaching Online 133
11.1 MOOCs . 134
11.2 Video . 138
11.3 Flipped Classrooms . 141
11.4 Life Online . 142
11.5 Exercises . 145

12 Exercise Types 147
12.1 The Classics . 147
12.2 Tracing . 150
12.3 Diagrams . 152
12.4 Automatic Grading . 154
12.5 Higher-Level Thinking . 156
12.6 Exercises . 157

IV Organizing 161

13 Building Community 163
13.1 Learn, Then Do . 165
13.2 Three Steps . 166
13.3 Retention . 167
13.4 Governance . 170
13.5 Final Thoughts . 171
13.6 Exercises . 171

14 Marketing 177
14.1 What Are You Offering to Whom? 177
14.2 Branding and Positioning 179
14.3 The Art of the Cold Call 181
14.4 A Final Thought . 182
14.5 Exercises . 182

15 Partnerships 185

15.1 Working With Schools . 185
15.2 Working Outside Schools 188
15.3 Final Thoughts . 189
15.4 Exercises . 190

16 Why I Teach 193

Bibliography 195

V Additional Material 241

A License 243

B Citation 245

C Joining Our Community 247
C.1 Contributor Covenant . 247
C.2 Using This Material . 249
C.3 Contributing and Maintaining 250

D Code of Conduct 253

E Glossary 255

F Meetings, Meetings, Meetings 263

G A Little Bit of Theory 267

H Lesson Design Template 271

I Checklists for Events 275

J Presentation Rubric 277

K Teamwork Rubric 279

L Pre-Assessment Questionnaire 281

M Design Notes 283

1 Introduction

Hundreds of grassroots groups have sprung up around the world to teach
programming, web design, robotics, and other skills to free-range learners
outside traditional classrooms. These groups exist so that people don’t
have to learn these things on their own, but ironically, their founders and
instructors are often teaching themselves how to teach.

There’s a better way. Just as knowing a few basic facts about germs and
nutrition can help you stay healthy, knowing a few things about psychology,
instructional design, inclusivity, and community organization can help you
be a more effective teacher. This book presents evidence-based practices
you can use right now, explains why we believe they are true, and points
you at other resources that will help you go further. Its four sections cover:

• how people learn;
• how to design lessons that work;
• how to deliver those lessons; and
• how to grow a community of practice around teaching.

Throughout, we try to follow our own advice: for example, we start with
ideas that are short, engaging, and actionable in order to motivate you
to read further (Chapter 10), include lots of exercises that can be used to
reinforce learning (Chapter 2), and include the original design for this book
in Appendix M so that you can see what a lesson design looks like.

This Book Belongs to Everyone

This book is a community resource. Parts of it were originally created
for the Software Carpentry instructor training programa, which has
been run over several hundred times over the past six years, and all of
it can be freely distributed and re-used under the Creative Commons
- Attribution 4.0 licenseb. Please see http://teachtogether.tech/ to
download a digital version or to purchase a printed copy at cost.

Contributions of all kinds are welcome, from errata and minor
improvements to entirely new sections and chapters. All proposed
contributions will be managed in the same way as edits to Wikipedia or

1

http://teachtogether.tech/

patches to open source software, and all contributors will be credited for
their work each time a new version is released. Please see Appendix C
for details and Section C.1 for our code of conduct.
ahttp://carpentries.github.io/instructor-training/
bhttps://creativecommons.org/licenses/by/4.0/

1.1 Who You Are

Section 6.1 explains how to figure out who your learners are. The four I had
in mind when writing this book are all end-user teachers: teaching isn’t
their primary occupation, they have little or no background in pedagogy,
and they may work outside institutional classrooms.

Emily trained as a librarian, and now works as a web designer and project
manager in a small consulting company. In her spare time, she helps
run web design classes for women entering tech as a second career. She
is now recruiting colleagues to run more classes in her area using the
lessons that she has created, and wants to know how to grow a volunteer
teaching organization.

Moshe is a professional programmer with two teenage children whose
school doesn’t offer programming classes. He has volunteered to run a
monthly after-school programming club, and while he frequently gives
presentations to colleagues, he has no experience designing lessons. He
wants to learn how to build effective lessons in collaboration with others,
and is interested in turning his lessons into a self-paced online course.

Samira is an undergraduate in robotics who is thinking about becoming a
full-time teacher after she graduates. She wants to help teach weekend
workshops for undergraduate women, but has never taught an entire class
before, and feels uncomfortable teaching things that she’s not an expert
in. She wants to learn more about education in general in order to decide
if it’s for her.

Gene is a professor of computer science whose research area is operating
systems. They have been teaching undergraduate classes for six years, and
increasingly believe that there has to be a better way. The only training
available through their university’s teaching and learning center relates
to posting assignments and grades in the learning management system,
so they want to find out what else they ought to be asking for.

These people have a variety of technical backgrounds and some previous
teaching experience, but no formal training in teaching, lesson design, or
community organization. Most work with free-range learners and are focused
on teenagers and adults rather than children; all have limited time and
resources.

Section C.2 describes different ways people have used this material.
(That discussion is delayed to an appendix because it refers to some of the

2

http://carpentries.github.io/instructor-training/
https://creativecommons.org/licenses/by/4.0/

ideas introduced later in this book.) We expect our made-up learners to use
this material as follows:

Emily will take part in a weekly online reading group with her volunteers.
Moshe will cover part of this book in a two-day weekend workshop and

study the rest on his own.
Samira will use this book in a one-semester undergraduate course with

assignments, a project, and a final exam.
Gene will read the book on their own in their office or while commuting,

wishing all the while that universities did more to support high-quality
teaching.

1.2 What to Read Instead

If you are in a hurry, or want a taste of what this book will cover, [Brow2018]
presents ten evidence-based tips for teaching computing. You can download
the paper, or read it online, on the PLoS website1.

I also recommend:

• The Carpentries instructor training2, for which most of the first half of
this book was originally developed.

• [Lang2016] and [Hust2012], which are short, approachable, and con-
nect things you can do right now to the research that backs them.

• [Majo2015], [Broo2016] [Berg2012], and [Rice2018]. The first cata-
logs a hundred different kinds of exercises you can do with students;
the second describes fifty different ways that groups can discuss things
productively, while the third is a collection of patterns for teaching, and
the fourth explains why to give learners breaks in class and ways to use
them productively. These books can be used on their own, but I think
they make more sense once Huston or Lang have given you a framework
for understanding them.

• [DeBr2015], which conveys a lot of what is true about educational by
explaining what isn’t, and [Dida2016], which grounds learning theory
in cognitive psychology.

• [Pape1993], which remains an inspiring vision of how computers could
change education.

• [Gree2014], [McMi2017] and [Watt2014]. These three short books
explain why so many attempts at educational reform have failed over the
past forty years, how for-profit colleges are exploiting and exacerbating
the growing inequality in our society, and how technology has repeatedly
failed to revolutionize education.

1https://doi.org/10.1371/journal.pcbi.1006023
2http://carpentries.github.io/instructor-training/

3

https://doi.org/10.1371/journal.pcbi.1006023
http://carpentries.github.io/instructor-training/

• [Guzd2015a], [Hazz2014], and [Sent2018], which are academically-
oriented books I’ve found about teaching computing.

• [Brow2007] and [Mann2015], because you can’t teach computing well
without changing the system in which we teach, and you can’t do that
on your own.

Of these, [Pape1993] is the one that shaped my ideas about teaching
the most. Papert’s central argument is that people don’t absorb knowledge;
instead, they (re-)construct it for themselves, and computers are a new and
powerful tool for helping them do that. Andy Ko’s excellent description3

does a better job of summarizing Papert’s ideas than I possibly could, and
[Craw2010] is a thought-provoking companion to both.

1.3 History

A lot of my stories aren’t true, but this is a true story. . .
When I started teaching people how to program in the late 1980s, I went

too fast, used too much jargon, and had no idea how much my learners
actually understood. I got better over time, but still felt like I was stumbling
around in a darkened room.

In 2010, I rebooted a project called Software Carpentry4 that teaches
basic computing skills to researchers. (The name “carpentry” was chosen
to distinguish what we taught from software engineering: we were trying
to show people the digital equivalent of painting a bathroom, not building
the Channel Tunnel.) In the years that followed, I discovered resources like
Mark Guzdial’s blog5 and the book How Learning Works [Ambr2010]. These
in turn led me to books like [Hust2012, Lemo2014, Lang2016] that showed
me how to build and deliver better lessons in less time and with less effort.

I started using these ideas in Software Carpentry6 in 2012. The results
were everything I’d hoped for, so I began running training sessions to pass on
what I’d learned. Those sessions became a training program7 that dozens of
trainers have now taught to over a thousand people on six continents. Since
then, I have run the course for people who teach programming to children,
librarians, and women re-entering the workforce or changing careers, and
all of those experiences have gone into this book.

3https://medium.com/bits-and-behavior/mindstorms-what-did-papert-argue-and-what-
does-it-mean-for-learning-and-education-c8324b58aca4
4http://carpentries.org
5http://computinged.wordpress.com
6http://carpentries.org
7https://carpentries.github.io/instructor-training/

4

https://medium.com/bits-and-behavior/mindstorms-what-did-papert-argue-and-what-does-it-mean-for-learning-and-education-c8324b58aca4
https://medium.com/bits-and-behavior/mindstorms-what-did-papert-argue-and-what-does-it-mean-for-learning-and-education-c8324b58aca4
http://carpentries.org
http://computinged.wordpress.com
http://carpentries.org
https://carpentries.github.io/instructor-training/

1.4 Why Learn to Program?

Politicians, business leaders, and educators often say that people should
learn to program because the jobs of the future will require it; for example,
[Scaf2017] found that people who aren’t software developers but who still
program make higher wages than comparable workers who do not.

However, as Benjamin Doxtdator has pointed out8, many of those claims
are built on shaky ground. Even if they were true, education shouldn’t
prepare people for the jobs of the future: it should give them the power to
decide what kinds of jobs there are, and to ensure that those jobs are worth
doing. And as Mark Guzdial points out9, there are actually many reasons to
learn how to program:

1. To understand our world.
2. To study and understand processes.
3. To be able to ask questions about the influences on their lives.
4. To use an important new form of literacy.
5. To have a new way to learn art, music, science, and mathematics.
6. As a job skill.
7. To use computers better.
8. As a medium in which to learn problem-solving.

Part of what motivates me to teach is the hope that if enough people
understand how to make technology work for them, we will be able to
build a society in which all of the reasons above are valued and rewarded
(Chapter 16).

1.5 Have a Code of Conduct

The most important thing I’ve learned about teaching in the last thirty years
is how important it is for everyone to treat everyone else with respect, both
in and out of class. If you use this material in any way, please adopt a Code
of Conduct like the one in Appendix D and require everyone who takes part
in your classes to abide by it.

A Code of Conduct can’t stop people from being offensive, any more
than laws against theft stop people from stealing. What it can do is make
expectations and consequences clear. More importantly, having one tells
people that there are rules, and that they can expect a friendly learning
experience.

If someone challenges you about having a Code of Conduct, remind
them that it isn’t an infringement of free speech. People have a right to say

8http://www.longviewoneducation.org/field-guide-jobs-dont-exist-yet/
9https://computinged.wordpress.com/2017/10/18/why-should-we-teach-programming-
hint-its-not-to-learn-problem-solving/

5

http://www.longviewoneducation.org/field-guide-jobs-dont-exist-yet/
https://computinged.wordpress.com/2017/10/18/why-should-we-teach-programming-hint-its-not-to-learn-problem-solving/
https://computinged.wordpress.com/2017/10/18/why-should-we-teach-programming-hint-its-not-to-learn-problem-solving/

what they think, but that doesn’t mean they have a right to say it wherever
and whenever they want. If they want to make someone feel unwelcome,
they can go and find their own space in which to do it.

1.6 Acknowledgments

This book would not exist without the hard work and feedback of Erin
Becker, Azalee Bostroem, Hugo Bowne-Anderson, Neil Brown, Gerard Capes,
Francis Castro, Warren Code, Ben Cotton, Richie Cotton, Karen Cranston,
Katie Cunningham, Natasha Danas, Matt Davis, Neal Davis, Mark Degani,
Michael Deutsch, Brian Dillingham, Kathi Fisler, Auriel Fournier, Bob Free-
man, Nathan Garrett, Mark Guzdial, Rayna Harris, Ahmed Hasan, Ian
Hawke, Felienne Hermans, Kate Hertweck, Toby Hodges, Dan Katz, Christina
Koch, Shriram Krishnamurthi, Colleen Lewis, Lenny Markus, Sue McClatchy,
Ian Milligan, Lex Nederbragt, Aleksandra Nenadic, Jeramia Ory, Joel Os-
tblom, Elizabeth Patitsas, Aleksandra Pawlik, Sorawee Porncharoenwase,
Emily Porta, Alex Pounds, Thomas Price, Danielle Quinn, Ian Ragsdale, Erin
Robinson, Rosario Robinson, Ariel Rokem, Pat Schloss, Malvika Sharan,
Florian Shkurti, Juha Sorva, Tracy Teal, Tiffany Timbers, Richard Tomsett,
Preston Tunnell Wilson, Matt Turk, Fiona Tweedie, Allegra Via, Anelda van
der Walt, Stéfan van der Walt, Belinda Weaver, Hadley Wickham, Jason
Williams, John Wrenn, and Andromeda Yelton. I am grateful to them, to
Lukas Blakk for the cover image, and to everyone who has used this material
over the years; any mistakes that remain are mine.

Breaking the Law

Much of the research reported in this book was publicly funded, but
despite that, a lot of it is locked away behind paywalls. At a guess, I
broke the law roughly 250 times to download papers from sites like
Sci-Hub. I hope the day is coming when no one will need to do that; if
you are a researcher, please hasten that day by publishing your research
in open access venues, or by posting copies on open preprint servers.

1.7 Exercises

Each chapter ends with a variety of exercises that include a suggested format
and an indication of how long they usually take in an in-person setting. Most
can be used in other formats—in particular, if you are going through this
book on your own, you can still do many of the exercises that are described
as being for groups—and you can always spend more time on them than
what’s suggested.

The exercises in this chapter can be used as preassessment questions
(Section 9.4) rather than as in-class exercises. if you have learners answer

6

them a few days before a class or workshop starts, they will give you a much
clearer idea of who they are and how best you can help them.

Highs and Lows (whole class/5 minutes)

Write brief answers to the following questions and share with your peers.
(If you are taking notes together online as described in Section 9.7, put your
answers there.)

1. What is the best class or workshop you ever took? What made it so
good?

2. What was the worst one? What made it so bad?

Know Thyself (whole class/5 minutes)

Write brief answers to the following questions and share them as described
above. Keep your answers somewhere so that you can refer to them as you
go through the rest of this book.

1. What do you most want to teach?
2. Who do you most want to teach?
3. Why do you want to teach?
4. How will you know if you’re teaching well?

Starting Points (individual/5 minutes)

Write brief answers to the following questions and share them as described
above. Keep your answers somewhere so that you can refer to them as you
go through the rest of this book.

1. What do you most want to learn about teaching and learning?
2. What is one specific thing you believe is true about teaching and learn-

ing?

Why Learn to Program? (individual/20 minutes)

Re-read Guzdial’s list of reasons to learn to program in Section 1.4, then
draw a 3×3 grid whose axes are labelled “low”, “medium”, and “high” and
place each point in one sector according to how important it is to you (the X
axis) and to the people you plan to teach (the Y axis).

1. Which points are closely aligned in importance (i.e., on the diagonal in
your grid)?

2. Which points are misaligned (i.e., in the off-diagonal corners)?
3. How does this change what you teach?

7

Part I

Learning

9

2 Building Mental Models

After reading this chapter, you will be able to. . .

• Explain the cognitive differences between novices and competent
practitioners in terms of mental models, and the implications of
these differences for teaching.

• Define and differentiate formative and summative assessment.
• Construct multiple-choice questions with plausible distractors that

have diagnostic power.

The first task in teaching is to figure out who your learners are and
what they already know. Our approach is based on the work of researchers
like Patricia Benner, who studied how nurses progress from being novices
to being experts [Benn2000]. Benner identified five stages of cognitive
development that most people go through in a fairly consistent way. (We
say “most” and “fairly” because human beings are highly variable; obsessing
over how a few geniuses taught or learned isn’t generally useful.)

For our purposes, we can simplify Benner’s progression to three stages:

Novices don’t know what they don’t know, i.e., they don’t yet have a usable
mental model of the problem domain. As a result, they reason by analogy
and guesswork, borrowing bits and pieces of mental models from other
domains that seem superficially similar.

Competent practitioners can do normal tasks with normal effort under
normal circumstances because they have a mental model that’s good
enough for everyday purposes. That model doesn’t have to be complete
or accurate, just useful.

Experts have mental models that include the complexities and special
cases that competent practitioners’ do not. This allows experts to handle
situations that are out of the ordinary, diagnose the causes of problems,
and so on. Like competent practitioners, experts know what they don’t
know and how to learn it; we will discuss expertise in more detail in
Chapter 3.

11

So what is a mental model? As you may have gathered from the way we
used the term above, it is a simplified representation of the most important
parts of some problem domain that is good enough to enable problem
solving. One example is the ball-and-spring models of molecules used in
high school chemistry. Atoms aren’t actually balls, and their bonds aren’t
actually springs, but the model does a good job of helping people reason
about chemical compounds and their reactions. A more sophisticated model
of an atom has a small central ball (the nucleus) surrounded by orbiting
electrons. Again, it’s wrong, but useful.

One sign that someone is a novice is that the things they say are not
even wrong1, e.g., they think there’s a difference between programs they
type in character by character and identical ones that they have copied
and pasted. As Chapter 10 explains, it is very important not to make
novices uncomfortable for doing this: until they have a better mental model,
reasoning by (inappropriate) borrowing from their knowledge of other
subjects is the best they can do.

Presenting novices with a pile of facts is counter-productive, because they
don’t yet have a model to fit those facts into. In fact, presenting too many
facts too soon can actually reinforce the incorrect mental model they’ve
cobbled together—as [Mull2007a] observed in a study of video instruction
for science students:

Students have existing ideas about. . . phenomena before viewing a video.
If the video presents. . . concepts in a clear, well illustrated way, students
believe they are learning but they do not engage with the media on a
deep enough level to realize that what was is presented differs from their
prior knowledge. . . There is hope, however. Presenting students’ common
misconceptions in a video alongside the. . . concepts has been shown to
increase learning by increasing the amount of mental effort students
expend while watching it.

Your goal when teaching novices should therefore be to help them con-
struct a mental model so that they have somewhere to put facts. For example,
Software Carpentry’s lesson on the Unix shell2 introduces fifteen commands
in three hours. That’s one command every twelve minutes, which seems
glacially slow until you realize that the lesson’s real purpose isn’t to teach
those fifteen commands: it’s to teach paths, history, tab completion, wild-
cards, pipes, command-line arguments, and redirection. Until novices
understand those concepts, the commands don’t make sense; once they
do understand those concepts, they can quickly assemble a repertoire of
commands.

The cognitive differences between novices and competent practitioners
underpin the differences between two kinds of teaching materials. A tu-
1https://en.wikipedia.org/wiki/Not_even_wrong
2http://swcarpentry.github.io/shell-novice/

12

https://en.wikipedia.org/wiki/Not_even_wrong
http://swcarpentry.github.io/shell-novice/

torial’s purpose is to help newcomers to a field build a mental model; a
manual’s role, on the other hand, is to help competent practitioners fill in
the gaps in their knowledge. Tutorials frustrate competent practitioners
because they move too slowly and say things that are obvious (though they
are anything but obvious to novices). Equally, manuals frustrate novices
because they use jargon and don’t explain things. This phenomenon is called
the expertise reversal effect [Kaly2003], and is another reason you have
to decide early on who your lessons are meant for.

A Handful of Exceptions

One of the reasons Unix and C became popular is that Kernighan et
al’s trilogy [Kern1978, Kern1983, Kern1988] somehow managed to be
good tutorials and good manuals at the same time. Ray and Ray’s book
on Unix [Ray2014] and Fehily’s introduction to SQL [Fehi2008] are
among the very few other books in computing that have accomplished
this; even after re-reading them several times, I don’t know how they
manage to do it.

2.1 Are People Learning?

One of the exercises in building a mental model is to clear away things that
don’t belong. As Mark Twain said, “It ain’t what you don’t know that gets
you into trouble. It’s what you know for sure that just ain’t so.” Broadly
speaking, novices’ misconceptions fall into three categories:

Factual errors like believing that Vancouver is the capital of British
Columbia (it’s Victoria). These are simple to correct, but getting the facts
right is not enough on its own.

Broken models like believing that motion and acceleration must be in the
same direction. We can address these by having novices reason through
examples that draw attention to contradictions.

Fundamental beliefs such as “the world is only a few thousand years old”
or “some kinds of people are just naturally better at programming than
others” [Guzd2015b, Pati2016]. These are also broken models, but often
deeply connected to the learner’s social identity, so they resist evidence
and reason.

Teaching is most effective when teachers identify and clear up learners’
misconceptions during the lesson. This is called formative assessment; the
word “formative” means it is used to form or shape the teaching. Learners
don’t pass or fail formative assessment; instead, it tells the teacher and the
learner how they are both doing and what they should focus on next. For
example, a music teacher might ask a learner to play a scale very slowly in
order to see if she is breathing correctly, while someone teaching web design

13

could ask a learner to resize the images in a page to check if his explanation
of CSS made sense.

The counterpoint to formative assessment is summative assessment,
which you do at the end of the lesson to determine if your teaching was
successful, i.e., whether the learner has understood what you have taught
and is ready to move on. One way of thinking about the difference is that
a chef tasting food as she cooks it is formative assessments, but the guests
tasting it once it’s served is summative.

In order to be useful during teaching, a formative assessment has to be
quick to administer (so that it doesn’t break the flow of the lesson) and give
a clear result (so that it can be used with groups as well as individuals).
The most widely used kind of formative assessment is probably the multiple
choice question (MCQ). A lot of teachers have a low opinion of them, but
when they are designed well, they can reveal much more than just whether
someone knows specific facts. For example, suppose you are teaching
children how to do multi-digit addition [Ojos2015], and you give them this
MCQ:

What is 37 + 15?
a) 52
b) 42
c) 412
d) 43

The correct answer is 52, but the other answers provide valuable insights:

• If the child chooses 42, she is throwing away the carry completely.
• If she chooses 412, she is treating each column of numbers as a separate

problem unconnected to its neighbors.
• If she chooses 43 then she knows she has to carry the 1, but is carrying

it back into the column it came from.

Each of these incorrect answers is a plausible distractor with diagnos-
tic power. A distractor is a wrong or less-than-best answer; “plausible”
means that it looks like it could be right, while “diagnostic power” means
that each of the distractors helps us figure out what to explain next to that
particular learner.

In order to come up with plausible distractors, think about the questions
your learners asked or problems they had the last time you taught this
subject. If you haven’t taught it before, think about your own misconceptions,
ask colleagues about their experiences, or look at the history of your field—if
everyone misunderstood your subject in some way fifty years ago, the odds
are that a lot of your learners will still misunderstand it that way today.
You can also ask open-ended questions in class to collect misconceptions
about material to be covered in a later class, or check question and answer

14

sites like Quora3 or Stack Overflow4 to see what people learning the subject
elsewhere are confused by.

MCQs aren’t the only kind of formative assessment you can use: Parsons
Problems (Chapter 4) and matching problems (Section 12.3) are also quick
and unambiguous. Short-answer questions are another option: if answers
are 2–5 words long, there are few enough plausible answers to make scalable
assessment possible [Mill2016a].

Developing formative assessment is useful even if you don’t use them
in class because it forces you to think about your learners’ mental models
and how they might be broken—in short, to put yourself into your learners’
heads and see the topic from their point of view. Whatever you pick, you
should use something that takes a minute or two every 10–15 minutes to
make sure that your learners are actually learning. That way, if a significant
number of people have fallen behind, only a short portion of the lesson
will have to be repeated. This rhythm isn’t based on an intrinsic attentional
limit: [Wils2007] found little support for the often-repeated claim that
students can only pay attention for 10–15 minutes. If you are teaching
online (Chapter 11), you should check in much more often to keep learners
engaged.

Formative assessments can also be used preemptively: if you start a class
with an MCQ and everyone answers it correctly, you can skip the part of
the lecture that was going to explain something your learners already know.
Doing this also shows learners that you respect your learners’ time enough
not to waste it, which helps with motivation (Chapter 10).

If the majority of the class chooses the same wrong answer, you should
go back and work on correcting the misconception that distractor points
to. If their answers are pretty evenly split between several options they are
probably just guessing, so you should back up and re-explain the idea in a
different way.

What if most of the class votes for the right answer, but a few vote for
wrong ones? In that case, you have to decide whether you should spend
time getting the minority caught up, or whether it’s more important to keep
the majority engaged. No matter how hard you work or what teaching
practices you use, you won’t always be able to give everyone what they
need; it’s your responsibility as a teacher to make the call.

Concept Inventories

Given enough data, MCQs can be made surprisingly precise. The best-
known example is the Force Concept Inventory [Hest1992], which
assesses understanding of basic Newtonian mechanics. By interviewing

3http://www.quora.com
4http://stackoverflow.com

15

http://www.quora.com
http://stackoverflow.com

a large number of respondents, correlating their misconceptions with
patterns of right and wrong answers, and then improving the questions,
its creators constructed a diagnostic tool that can pinpoint specific
misconceptions. Researchers can then use that tool to measure how
effective changes in teaching methods are [Hake1998].

Tew and others developed and validated a language-independent
assessment for introductory programming [Tew2011]; [Park2016] has
replicated it, and [Hamo2017] is developing a concept inventory for
recursion. However, it’s very costly to build tools like this, and students’
ability to search for answers online is an ever-increasing threat to their
validity.

Working formative assessments into class requires only a little bit of
preparation and practice. Giving students colored or numbered cards so that
they can all answer an MCQ at once (rather than holding up their hands
in turn), having one of the options be, “I have no idea”, and encouraging
them to talk to their neighbors for a few seconds before answering will all
help ensure that your teaching flow isn’t disrupted. Section 9.2 describes
a powerful, evidence-based teaching method that builds on these simple
ideas.

Humor

Teachers sometimes put supposedly-silly answers like “my nose!” on
MCQs, particularly ones intended for younger students. However,
they don’t provide any insight into learners’ misconceptions, and most
people don’t actually find them funny (especially on re-reading).

A lesson’s formative assessments should prepare learners for its sum-
mative assessment: no one should ever encounter a question on an exam
that the teaching did not prepare them for. This doesn’t mean you should
never put new kinds of problems on an exam, but if you do, you should
have given learners practice with (and feedback on) tackling novel problems
beforehand.

2.2 Exercises

Your Mental Models (think-pair-share/15 minutes)

What is one mental model you use to understand your work? Write a few
sentences describing it, and give feedback on a partner’s. Once you have
done that, have a few people share their models with the whole group. Does
everyone agree on what a mental model is? Is it possible to give a precise
definition, or is the concept useful precisely because it is a bit fuzzy?

16

Symptoms of Being a Novice (whole class/5 minutes)

What are the symptoms of being a novice? I.e., what does someone do or
say that leads you to classify them as a novice in some domain?

Modelling Novice Mental Models (pairs/20 minutes)

Create a multiple choice question related to a topic you have taught or
intend to teach and explain the diagnostic power of each its distractors (i.e.,
explain what misconception each distractor is meant to identify).

When you are done, trade MCQs with a partner. Is their question
ambiguous? Are the misconceptions plausible? Do the distractors actually
test for them? Are any likely misconceptions not tested for?

Other Kinds of Formative Assessment (whole class/20 minutes)

A good formative assessment requires people to think through a problem.
For example, imagine that you have placed a block of ice in a bathtub and
then filled the tub to the rim with water. When the ice melts, does the
water level go up (so that the tub overflows), go down, or stay the same
(Figure 2.1)?

ice

water

Figure 2.1: Ice in a Bathtub

The correct answer is that the level stays the same: the ice displaces its
own weight in water, so it exactly fills the “hole” it has made when it melts.
Figuring out why helps people build a model of the relationship between
weight, volume, and density [Epst2002].

Describe another kind of formative assessment you have seen or used
and explain how it helps both the instructor and the learner figure out where
they are and what they need to do next.

A Different Progression (individual/15 minutes)

The model of skill development described at the start of this chapter is
sometimes called the Dreyfus model5. Another commonly-used progression
is the four stages of competence6:
5https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition
6https://en.wikipedia.org/wiki/Four_stages_of_competence

17

https://en.wikipedia.org/wiki/Dreyfus_model_of_skill_acquisition
https://en.wikipedia.org/wiki/Four_stages_of_competence

Unconscious incompetence: the person doesn’t know what they don’t
know.

Conscious incompetence: the person realizes that they don’t know some-
thing.

Conscious competence: the person has learned how to do something, but
can only do it while concentrating, and may still need to break things
down into steps.

Unconscious competence: the skill has become second nature, and the
person can do it reflexively.

Identify one subject where you are at each level. What level are most of
your learners at? What level are you trying to get them to?

What Kind of Book Is This? (small groups/5 minutes)

What are the chapters in the main body of this book: a tutorial or a manual?
What about the appendices? Why?

What Kind of Computing? (individual/10 minutes)

[Tedr2008] summarizes three traditions in computing:

Mathematical: Programs are the embodiment of algorithms; they are either
correct or incorrect, as well as more or less efficient.

Scientific: Programs are more or less accurate models of information pro-
cesses that can be studied using the scientific method.

Engineering: Programs are built objects like dams and airplanes, and are
more or less effective and reliable.

Which of these best matches your mental model of computing? If none of
them do, what model do you have?

18

3 Expertise and Memory

After reading this chapter, you will be able to. . .

• Define expertise and explain how it works using a graph metaphor
for cognition.

• Explain the difference between repetition and deliberate practice.
• Define and construct concept maps, and explain the benefits of

externalizing cognition.
• Differentiate long-term and short-term memory, describe the capac-

ity limits of the latter, and explain the impact of these limits on
teaching.

Memory is the residue of thought.
— Dan Willingham

The previous chapter explained what distinguishes novices from com-
petent practitioners. This one looks at expertise: what it is, how people
acquire it, and how it can be harmful as well as helpful. It then shows how
concept maps can be used to figure out how to turn knowledge into lessons.

To start, what do we mean when we say someone is an expert? The usual
answer is that they can solve problems much faster than people who are
“merely competent”, or that they can recognize and deal with cases where
the normal rules don’t apply. They also somehow make this look effortless:
in many cases, they instantly know what the right answer is [Parn2017].

Expertise is more than just knowing more facts: competent practitioners
can memorize a lot of trivia without any noticeable improvement in their
performance. Instead, imagine for a moment that we store knowledge as
a network or graph in which facts are nodes and relationships are arcs.
(This is definitely not how our brains work, but it’s a useful metaphor.) The
key difference between experts and competent practitioners is that experts’
mental models are much more densely connected, i.e., they are much more
likely to know of a connection between any two randomly-selected pieces
of information.

19

This metaphor helps explain many observed aspects of expert behavior:

• Experts can jump directly from a problem to its solution because there
actually is a direct link between the two in their mind. Where a compe-
tent practitioner would have to reason “A, B, C, D, E”, the expert can go
from A to E in a single step. We call this intuition, and it isn’t always a
good thing: when asked to explain their reasoning, experts often can’t,
because they didn’t actually reason their way to the solution—they just
recognized it.

• Densely-connected graphs are also the basis for experts’ fluid repre-
sentations, i.e., their ability to switch back and forth between different
views of a problem [Petr2016]. For example, when trying to solve a
problem in mathematics, an expert might switch between tackling it
geometrically and representing it as a set of equations to be solved.

• This metaphor also explains why experts are better at diagnosis than
competent practitioners: more linkages between facts makes it easier
to reason backward from symptoms to causes. (And this in turn is
why asking programmers to debug during job interviews gives a more
accurate impression of their ability than asking them to program.)

• Finally, experts are often so familiar with their subject that they can no
longer imagine what it’s like to not see the world that way. As a result,
they are often less good at teaching the subject than people with less
expertise who still remember learning it themselves.

The last of these points is important enough to have a name of its own:
expert blind spot. As originally defined in [Nath2003], it is the tendency
of experts to organize explanation according to the subject’s deep principles,
rather than being guided by what their learners already know. While it can
be overcome with training, it’s part of why there is no correlation between
how good someone is at doing research in an area and how good they are
at teaching it [Mars2002].

The J Word

Experts often betray their blind spot by using the word “just” in expla-
nations, as in, “Oh, it’s easy, you just fire up a new virtual machine and
then you just install these four patches to Ubuntu and then you just
re-write your entire program in a pure functional language.” As we
discuss in Chapter 10, doing this signals that the speaker thinks the
problem is trivial and that the person struggling with it must therefore
be stupid.

Don’t do this.

20

3.1 Concept Maps

The graph metaphor explains why helping learners make connections is as
important as introducing them to facts: without those connections, it’s hard
for people to recall things that they know. To use another analogy, the more
people you know at a party, the less likely you are to leave early.

Our tool of choice for representing someone’s mental model as a graph
is a concept map, in which facts are bubbles and connections are labelled
arcs. It is important that they are labelled: saying “X and Y are related” is
only helpful if we explain what the relationship is. And yes, different people
can have different concept maps for the same topic, but one of the benefits
of concept mapping is that it makes those differences explicit.

As an example, Figure 3.1 reproduces a concept map taken from the
IHMC CMap site1 showing why the Earth has seasons, and Figure 11.1 uses
a concept map to explain how to create a good screencast.

seasons

amount of
sunlight

seasonal
temperature

variations

length
of day

height of sun
above horizon

summer
winter

tilt of axis position in
orbit

sun

slight variation
in distance

negligible
effect

are determined
by

results in

is
determined

by

is longer in

is higher in is shorter in

is lower in

is
determined

by

in summer
points toward

axis points toward
or away from

with

has

Figure 3.1: Concept Map for Seasons (from https://cmap.ihmc.us/)

1https://cmap.ihmc.us/

21

https://cmap.ihmc.us/
https://cmap.ihmc.us/

To show how concept maps can be using in teaching programming,
consider this for loop in Python:

for letter in "abc":
print(letter)

whose output is:

a
b
c

The three key “things” in this loop are shown in the top of Figure 3.2, but
they are only half the story. The expanded version in the bottom shows the
relationships between those things, which are as important for understanding
as the concepts themselves.

loop
variable collection

loop
body

loop
variable collection

loop
body

takes each value
in order from

changes each
time through

runs once for
each value of

Figure 3.2: Concept Map for a For Loop

Concept maps can be used in many ways:

Helping teachers figure out what they’re trying to teach. Crucially, a
concept map separates content from order: in our experience, people

22

rarely wind up teaching things in the order in which they first drew them.
(In technical terms, they reduce the teacher’s cognitive load—we will
discuss this again in Chapter 4.)

Aiding communication between lesson designers. Teachers with very
different ideas of what they’re trying to teach are likely to pull their
learners in different directions; drawing and sharing concept maps isn’t
guaranteed to prevent this, but it helps.

Aiding communication with learners. While it’s possible to give learners
a pre-drawn map at the start of a lesson for them to annotate, it’s better
to draw it piece by piece while teaching to reinforce the ties between
what’s in the map and what the teacher said. (We will return to this idea
in Section 4.1.)

For assessment. Having learners draw pictures of what they think they
just heard shows the teacher what they missed and what was miscom-
municated. Reviewing learners’ concept maps is too time-consuming to
do as in-class formative assessment, but very useful in weekly lectures
once learners are familiar with the technique. The qualification is necessary
because any new way of doing things initially slows people down—if a
student is trying to make sense of basic programming, asking them to
figure out how to draw their thoughts at the same time is an unfair load.

[Kepp2008] looked at the use of concept mapping in computing educa-
tion. One of their findings was that, “. . . concept mapping is troublesome
for many students because it tests personal understanding rather than
knowledge that was merely learned by rote.” As someone who values
understanding over rote knowledge, I count that as a benefit.

Some teachers are also skeptical of whether novices can effectively map
their understanding, since introspection and explanation of understanding
are generally more advanced skills than understanding itself. Like any other
new tool or technique, concept maps have to be taught and practiced if they
are to be effective.

Start Anywhere

When asked to draw their first concept map, many people will stare at
the blank page in front of them, not knowing where to start. When this
happens, right down two words associated with the topic you’re trying
to map, then draw a line between them and add a label explaining how
those two ideas are related. You can then ask what other things are
related in the same way, what parts those things have, or what happens
before or after the concepts already on the page in order to discover
more nodes and arcs. After that, the hard part is often stopping.

Concept maps are just one way to represent our understanding of a
subject; others include mind maps (which are usually radial and hierarchi-

23

cal), conceptual diagrams (which use predefined categories and relation-
ships), and visual metaphors (which are striking images overlaid with text)
[Eppl2006]. Maps, flowcharts, and blueprints can also be useful in some
contexts, as can decision trees like [Abel2009] that shows how to choose
the right kind of chart for different kinds of questions and data.

What each does is externalize cognition, i.e., make thought processes
and mental models visible so that they can be compared, contrasted, and
combined. [Cher2007] suggests that externalizing cognition may be the
main reason developers draw diagrams when they are discussing things.
They found that most developers can’t identify the parts of their own dia-
grams shortly after having created them—instead of archiving information
for posterity, diagrams are actually a cache for short-term memory that lets
a participant in the discussion point at a wiggly bubble and say “that” to
trigger recall of several minutes of debate.

Rough Work and Honesty

Many user interface designers believe that it’s better to show people
rough sketches of their ideas rather than polished mock-ups because
people are more likely to give honest feedback on something that they
think only took a few minutes to create—if it looks as though what
they’re critiquing took hours to create, most will pull their punches.
When drawing concept maps to motivate discussion, you should there-
fore use pencils and scrap paper (or pens and a whiteboard) rather
than fancy computer drawing tools.

3.2 Seven Plus or Minus Two

While the graph model of knowledge is wrong but useful, another simple
model has a sounder physiological basis. As a rough approximation, human
memory can be divided into two distinct layers. The first, called long-term
or persistent memory, is where we store things like our friends’ names,
our home address, and what the clown did at our eighth birthday party that
scared us so much. It is essentially unbounded: barring injury or disease,
we will die before it fills up. However, it is also slow to access—too slow to
help us handle hungry lions and disgruntled family members.

Evolution has therefore given us a second system called short-term or
working memory. It is much faster, but also much smaller: [Mill1956]
estimated that the average adult’s working memory could only hold 7±2
items at a time. This is why phone numbers2 are typically 7 or 8 digits long:
back when phones had dials instead of keypads, that was the longest string

2https://www.quora.com/Why-did-Bell-Labs-create-phone-numbers-of-7-digits-10-digits-Is-
there-a-reason-that-dashes-and-brackets-are-used

24

https://www.quora.com/Why-did-Bell-Labs-create-phone-numbers-of-7-digits-10-digits-Is-there-a-reason-that-dashes-and-brackets-are-used
https://www.quora.com/Why-did-Bell-Labs-create-phone-numbers-of-7-digits-10-digits-Is-there-a-reason-that-dashes-and-brackets-are-used

of numbers most adults could remember accurately for as long as it took
the dial to go around several times. As Section 3.3 discusses, short-term
memory may actually be as small as 4±1 items; our innate tendency to
remember things together gives the illusion of it being larger.

Participation

The size of working memory is sometimes used to explain why sports
teams tend to have about half a dozen members or be broken down
into sub-groups like the forwards and backs in rugby. It is also used
to explain why meetings are only productive up to a certain number
of participants: if twenty people try to discuss something, either three
meetings are going on at once or half a dozen people are talking while
everyone else listens. The argument is that people’s ability to keep
track of their peers is constrained by the size of working memory, but
so far as I know, the link has never been proven.

7±2 is probably the most important number in programming. When
someone is trying to write the next line of a program, or understand what’s
already there, they need to keep a bunch of arbitrary facts straight in their
head: what does this variable represent, what value does it currently hold,
etc. If the number of facts grows too large, their mental model of the
program comes crashing down (something we have all experienced).

7±2 is also the most important number in teaching. A teacher cannot
push information directly into a learner’s long-term memory. Instead, what-
ever they present is first stored in the learner’s short-term memory, and
is only transferred to long-term memory after it has been held there and
rehearsed (Section 5.1). If the teacher presents too much information too
quickly, the new will displace the old before it has a chance to consolidate
in long-term memory.

This is one of the reasons to create a concept map for a lesson when
designing it: doing so helps the teacher identify how many pieces of separate
information the learner will need to store in memory as the lesson unfolds.
In practice, I often draw a concept map, realize there’s far too much in it to
teach in a single pass, and then carve out tightly-connected subsections to
break the lesson into digestible pieces, each of which leads to a formative
assessment.

Building Concept Maps Together

Concept maps can be used as a classroom discussion exercise. Put
learners in small groups (2–4 people each), give each group some
sticky notes on which a few key concepts are written, and have them
build a concept map on a whiteboard by placing those sticky notes,

25

connecting them with labelled arcs, and adding any other concepts
they think they need.

The next time you have a team meeting, give everyone a sheet of
paper and have them spend a few minutes drawing a concept map
of the project you’re all working on—separately. On the count of
three, have everyone reveal their concept maps simultaneously. Once
everyone realizes how different their mental models of the project are,
a lot of interesting discussion will ensure. . . .

The simple model of memory presented here has largely been replaced
by a more sophisticated one in which short-term memory is broken down
into several modal stores (e.g., for visual vs. linguistic memory), each of
which does some involuntary preprocessing [Mill2016a]. Our presentation
is therefore an example of a mental model that aids learning and everyday
work, but is eventually superseded by something more complicated.

Research also now indicates that the limiting factor for long-term mem-
ory is not retention, but rather the ability to recall memories that are present.
Studying in short, spaced periods in a variety of contexts improves recall; the
reason may be that doing so creates more cues than cramming (Section 5.1).

3.3 Pattern Recognition

The preceding section said that short-term memory can only store 7±2 items
at a time, and recent research have suggested that its actual size might
be as low as 4±1 items [Dida2016]. In order to handle larger information
sets, our minds create chunks. For example, most of us remember words as
single items, rather than as sequences of letters. Similarly, the pattern made
by five spots on cards or dice is remembered as a whole rather than as five
separate pieces of information.

One key finding in cognition research is that experts have more and
larger chunks than non-experts, i.e., experts “see” larger patterns, and have
more patterns to match things against. This allows them to reason at a
higher level, and to search for information more quickly and more accurately.
However, chunking can also mislead us if we mis-identify things: newcomers
really can sometimes see things that experts have looked at and missed.

Given how important chunking is to thinking, it is tempting to try to
teach patterns directly. One way to do this is to identify design patterns3,
which are reusable solutions to common problems. Patterns help competent
practitioners think and talk to each other in many domains (including
teaching [Berg2012]), but pattern catalogs are too dry and too abstract
for novices to make sense of on their own. That said, giving names to a
small number of patterns does seem to help with teaching, primarily by

3https://en.wikipedia.org/wiki/Software_design_pattern

26

https://en.wikipedia.org/wiki/Software_design_pattern

giving the learners a richer vocabulary to think and communicate with
[Kuit2004, Byck2005, Saja2006]. We will return to this in Section 7.1.

3.4 Becoming an Expert

So how does someone become an expert? The idea that ten thousand hours
of practice will do it is widely quoted but probably not true4: doing the same
thing over and over again is much more likely to solidify bad habits than
improve performance. What actually works is deliberate practice (also
sometimes called reflective practice), which is doing similar but subtly
different things, paying attention to what works and what doesn’t, and then
changing behavior in response to that feedback to get cumulatively better.

A common progression is for people to go through three stages:

Act on feedback from others. For example, a student might write an essay
about what they did on their summer holiday and get feedback from a
teacher telling them how to improve it.

Give feedback to others. For example, they might critique character devel-
opment in The Catcher in the Rye. For this to be effective, it’s essential that
they get feedback on their feedback, i.e., that the teacher critique their
analysis.

Give feedback to themselves. At some point, they start critiquing their
own work in real time (or nearly so) using the skills they have now built
up. Doing this is so much faster than waiting for feedback from others
that proficiency suddenly starts to take off.

What Counts as Deliberate Practice?

[Macn2014] found that “. . . deliberate practice explained 26% of the
variance in performance for games, 21% for music, 18% for sports, 4%
for education, and less than 1% for professions.” However, [Eric2016]
critiqued this finding by saying, “Summing up every hour of any type of
practice during an individual’s career implies that the impact of all types
of practice activity on performance is equal—an assumption that. . . is
inconsistent with the evidence.” To be effective, deliberate practice
requires both a clear performance goal and immediate informative
feedback.

4http://www.goodlifeproject.com/podcast/anders-ericsson/

27

http://www.goodlifeproject.com/podcast/anders-ericsson/

3.5 Exercises

Concept Mapping (pairs/30 minutes)

Draw a concept map for something you would teach in five minutes. Trade
with a partner, and critique each other’s maps. Do they present concepts
or surface detail? Which of the relationships in your partner’s map do you
consider concepts and vice versa?

Concept Mapping (Again) (small groups/20 minutes)

Working in groups of 3–4, have each person independently draw a concept
map showing their mental model of what goes on in a classroom. When
everyone is done, compare the concept maps. Which concepts and relation-
ships are common? Which are different? Where do your mental models
agree and disagree?

A Concept Map for This Material (individual/30 minutes)

After you have finished going through this material (not just this chapter),
pick one small topic, draw a concept map for it, and send it to us (Ap-
pendix C). If we decide to add it to this book, we will add you to the credits
in the introduction.

Noticing Your Blind Spot (small groups/10 minutes)

Consider all the things you have to know to understand this one line of
Python source code:

answers = ['tuatara', 'tuataras', 'bus', "lick"]

As Elizabeth Wickes points out5:

• The square brackets surrounding the content mean we’re working with a
list (as opposed to square brackets immediately to the right of something,
which is a data extraction notation).

• The elements are separated by commas, which are outside/between the
quotes (rather than inside, as they would be for quoted speech).

• Each element is a character string, and we know that because of the
quotes. We could have number or other data types in here if we wanted;
we need quotes because we’re working with strings.

• We’re mixing our use of single and double quotes, and Python doesn’t
care (so long as they balance around the individual strings).

5https://twitter.com/elliewix/status/981285432922202113

28

https://twitter.com/elliewix/status/981285432922202113

• Each comma is followed by a space, which is not required by Python,
but we prefer it for readability.

Each of these details might be overlooked by an expert. Working in groups of
3–4, select something equally short from a lesson you have recently taught
or taken and break it down to this level of detail.

29

4 Cognitive Load

After reading this chapter, you will be able to. . .

• Define cognitive load and explain how consideration of it can be
used to shape instruction.

• Explain what faded examples are and construct faded examples for
use in programming workshops.

• Explain what Parsons Problems are and construct Parsons Problems
for use in programming workshops.

• Explain how multimedia should and shouldn’t be used in teaching
and why.

• Describe ways instructors differ from students and what effect those
differences have on instruction.

In [Kirs2006], Kirschner, Sweller and Clark wrote:

Although unguided or minimally guided instructional approaches are
very popular and intuitively appealing. . . these approaches ignore both
the structures that constitute human cognitive architecture and evidence
from empirical studies over the past half-century that consistently indicate
that minimally guided instruction is less effective and less efficient than
instructional approaches that place a strong emphasis on guidance of the
student learning process. The advantage of guidance begins to recede only
when learners have sufficiently high prior knowledge to provide “internal”
guidance.

Their paper set off a minor academic storm, because beneath the jargon
the authors were claiming that allowing learners to ask their own questions,
set their own goals, and find their own path through a subject, as they would
when solving problems in real life, isn’t effective. This approach—called
inquiry-based learning—is intuitively appealing, but the authors argued
that it overloads learners by requiring them to master a domain’s factual
content and its problem-solving strategies at the same time.

More specifically, cognitive load theory posited that people have to deal
with three things when they’re learning:

31

Intrinsic load is what people have to keep in mind in order to absorb new
material. In a programming class, this might be understanding what a
variable is, or understanding how assignment in a programming language
is different from creating a reference to a cell in a spreadsheet. Intrinsic
load can’t be reduced except by reducing the amount of content being
taught.

Germane load is the (desirable) mental effort required to link new infor-
mation to old, which is one of the things that distinguishes learning from
memorization. An example might be remembering that a loop variable is
assigned a new value each time the loop executes.

Extraneous load is everything else in the instructional material that dis-
tracts from learning, such as matching the highlight colors in the instruc-
tor’s examples to the different color scheme used by the learner’s own
editor.

Cognitive load theory holds that people have to split a fixed amount
of working memory between these three things. Our goal as instructors is
to maximize the memory available to handle germane load, which means
reducing the intrinsic load at each step and eliminating as much of the
extraneous load as possible.

For example, searching for a solution strategy is an extra burden on top
of actually applying that strategy. We can therefore accelerate learning by
giving learners worked examples that break a solution procedure down into
steps, each of which can be mastered on its own before being combined
with other steps (which is a step in its own right).

One way to do this is to give learners a series of faded examples. The
first example presents a nearly-complete use of the same problem-solving
strategy just demonstrated, but with a small number of blanks for the learner
to fill in. The next problem is of the same type, but has more blanks, and
so on until the learner is asked to solve the entire problem. The material
that isn’t blank is often referred to as scaffolding, since it serves the same
purpose as the scaffolding set up temporarily at a building site.

Faded examples can be used in almost every kind of teaching, from sport
and music to contract law. Someone teaching programming might use them
by first explaining how to calculate the total length of a list of words:

total_length(["red", "green", "blue"]) => 12
define total_length(list_of_words):

total = 0
for each word in list_of_words:

total = total + word.length()
return total

and then asking learners to fill in the blanks in this (which focuses their
attention on control structures):

32

word_lengths(["red", "green", "blue"]) => [3, 5, 4]
define word_lengths(list_of_words):

list_of_lengths = []
for each ____ in ____:

list_of_lengths.append(____)
return list_of_lengths

The next problem might be this (which focuses their attention on updating
the final result):

join_all(["red", "green", "blue"]) => "redgreenblue"
define join_all(list_of_words):

joined_words = ____
for each ____ in ____:

return joined_words

Learners would finally be asked to write an entire function on their own:

make_acronym(["red", "green", "blue"]) => "RGB"
define make_acronym(list_of_words):

Faded examples work because they introduce the problem-solving strat-
egy piece by piece: at each step, learners have one new problem to tackle,
which is less intimidating than a blank screen or a blank sheet of paper
(Section 9.11). It also encourages learners to think about the similarities and
differences between various approaches, which helps create the linkages in
their mental models that help retrieval.

Efficiency vs. Extent

Seeing worked examples accelerates learning more than having stu-
dents write lots of code themselves [Skud2014]. As we will see in
Chapter 7, deconstructing code by tracing it or debugging it also in-
creases the efficiency of learning [Grif2016]. However, this isn’t the
same as saying that people learn more unless they see additional prob-
lems.

The key to constructing a good faded example is to think about the
problem-solving strategy it is meant to teach. For example, the series of
problems are all examples of the accumulator pattern, in which the results of
processing items from a collection are repeatedly added to a single variable
in some way to create the final result.

33

Critics have sometimes argued that any result can be justified after
the fact by labelling things that hurt performance as extraneous load and
things that don’t as intrinsic or germane. However, instruction based on
cognitive load theory is undeniably effective. For example, [Maso2016]
redesigned a database course to remove split attention and redundancy
effects, and provide worked examples and sub-goals. The new course
reduced exam failure rate by 34% on an identical final exam and increased
student satisfaction.

A decade after the publication of [Kirs2006], a growing number of
people believe that cognitive load theory and inquiry-based approaches are
compatible if viewed in the right way. [Kaly2015] argues that cognitive
load theory is basically micro-management of learning within a broader
context that considers things like motivation, while [Kirs2018] extends
cognitive load theory to include collaborative aspects of learning. As with
[Mark2018] (discussed in Section 5.1), researchers’ perspectives may differ,
but the practical implementation of their theories often wind up being the
same.

Cognitive Apprenticeship

An alternative model of learning and instruction that also uses scaffold-
ing and fading is cognitive apprenticeship, which emphasizes the way
in which a master passes on skills and insights to an apprentice. The
master provides models of performance and outcomes, then coaches
novices as they take their first steps by explaining what they’re doing
and why [Coll1991, Casp2007]. The apprentice reflects on their own
problem solving, e.g., by thinking aloud or critiquing their own work,
and eventually explores problems of their own choosing.

This model tells us that instructors should present several examples
when presenting a new idea so that learners can see what to generalize,
and that we should vary the form of the problem to make it clear
what are and aren’t superficial features. (For a long time, I believed
that the variable holding the value a function was going to return had
to be called result because my instructor always used that name in
examples.) Problems should be presented in real-world contexts, and
we should encourage self-explanation, since it helps learners organize
and make sense of what they have just been taught. This is discussed
in more detail in Section 5.1.

Parsons Problems

Another kind of exercise that can be explained in terms of cognitive load
theory is called a Parsons Problem (named after one of their creators
[Pars2006]). If you are teaching someone to speak a new language, you
could ask them a question, and then give them the words they need to

34

answer the question, but in jumbled order. Their task is to put the words
in the right order to answer the question grammatically, which frees them
from having to think simultaneously about what to say and how to say it.

Similarly, when teaching people to program, you can give them the
lines of code they need to solve a problem, and ask them to put them
in the right order. This allows them to concentrate on control flow and
data dependencies, i.e., on what has to happen before what, without being
distracted by variable naming or trying to remember what functions to
call. Multiple studies have shown that Parsons Problems take less time for
learners to do, but produce equivalent educational outcomes [Eric2017].

Labelled Subgoals

Subgoal labelling means giving names to the steps in a step-by-step de-
scription of a problem-solving process. [Marg2016, Morr2016] all found
that students with labelled subgoals solved Parsons Problems better than
students without, and the same benefit is seen in other problem domains
[Marg2012]. Returning to the Python example used earlier, the subgoals in
finding the total length of a list of words or constructing an acronym are:

1. Create an empty value of the type to be returned.
2. Get the value to be added to the result from the loop variable.
3. Update the result with that value.

Labelling subgoals works because grouping related steps in a chunk
(Section 3.3) and giving each chunk a name helps learners distinguish
between generic information and information that is specific to the problem
at hand, which reduces cognitive load. It also helps them build a mental
model of that kind of problem, so that they can solve other problems of that
kind, and gives them a natural opportunity for self-explanation (Section 5.1).

4.1 Split Attention

Research by Mayer and colleagues on the split-attention effect is closely
related to cognitive load theory [Maye2003]. Linguistic and visual input
are processed by different parts of the human brain, and linguistic and
visual memories are stored separately as well. This means that correlating
linguistic and visual streams of information takes cognitive effort: when
someone reads something while hearing it spoken aloud, their brain can’t
help but check that it’s getting the same information on both channels (a
topic we’ll return to when discussing dual coding in Section 5.1).

Learning is therefore more effective when information is presented
simultaneously in two different channels, but when that information is
complementary rather than redundant. For example, people generally find it
harder to learn from a video that has both narration and on-screen captions

35

than from one that has either the narration or the captions but not both,
because some of their attention has to be devoted to checking that the
narration and the captions agree with each other. Two notable exceptions
to this are people who do not yet speak the language well and people with
hearing exercises or other special needs, both of whom may find that the
extra effort is a net benefit.

This explains why it’s more effective to draw a diagram piece by piece
while teaching rather than to present the whole thing at once. If parts of
the diagram appear at the same time as things are being said, the two will
be correlated in the learner’s memory. Pointing at part of the diagram later
is then more likely to trigger recall of what was being said when that part
was being drawn.

The split-attention effect does not mean that learners shouldn’t try to rec-
oncile multiple incoming streams of information—after all, this is something
they have to do in the real world [Atki2000]. Instead, it means that in-
struction shouldn’t require it while people are mastering unit skills; instead,
using multiple sources of information simultaneously should be treated as a
separate learning task.

Not All Graphics Are Created Equal

[Sung2012] presents an elegant study that distinguishes seductive
graphics (which are highly interesting but not directly relevant to
the instructional goal), decorative graphics (which are neutral but not
directly relevant to the instructional goal), and instructive graphics
(directly relevant to the instructional goal). Students who received
any kind of graphic gave significantly higher satisfaction ratings to
material than those who didn’t get graphics, but only students who got
instructive graphics actually performed better.

Similarly, [Stam2013, Stam2014] found that having more infor-
mation can actually lower performance. They showed children pic-
tures, pictures and numbers, or just numbers for two tasks: fraction
equivalence and fraction addition. For equivalence, having pictures or
pictures and numbers outperformed having numbers only. For addition,
however, having pictures outperformed pictures and numbers, which
outperformed just having numbers.

4.2 Minimal Manuals

The most extreme use of cognitive load theory may be the “minimal manual”
method introduced in [Carr1987]. Its starting point is a quote from a
user: “I want to do something, not learn how to do everything.” Carroll
and colleagues therefore redesigned training to present every idea as a
single-page self-contained task: a title describing what the page was about,

36

step-by-step instructions of how to do something really simple (like how to
delete a blank line in a text editor), and then several notes how to recognize
and debug common problems.

Carroll and colleagues found that rewriting training materials this way
made them shorter overall, and that people using them learned faster. Later
studies like [Lazo1993] confirmed that this approach outperformed the
traditional approach regardless of prior experience with computers.

Looking back, [Carr2014] summarized this work by saying:

Our “minimalist” designs sought to leverage user initiative and prior
knowledge, instead of controlling it through warnings and ordered steps.
It emphasized that users typically bring much expertise and insight to this
learning, for example, knowledge about the task domain, and that such
knowledge could be a resource to instructional designers. Minimalism
leveraged episodes of error recognition, diagnosis, and recovery, instead
of attempting to merely forestall error. It framed troubleshooting and
recovery as learning opportunities instead of as aberrations.

He goes on to say that at the time, instruction decomposed skills into sub-
skills hierarchically and then drilled people on the sub-skills. However, this
meant context was lost: the goals weren’t apparent until people had learned
the pieces. Since people want to dive in and do real tasks, well-designed
instruction should help them do that.

4.3 Exercises

Create a Faded Example (pairs/30 minutes)

It’s very common for programs to count how many things fall into different
categories: for example, how many times different colors appear in an
image, or how many times different words appear in a paragraph of text.

1. Create a short example (no more than 10 lines of code) that shows
people how to do this, and then create a second example that solves a
similar problem in a similar way, but has a couple of blanks for learners
to fill in. How did you decide what to fade out? What would the next
example in the series be?

2. Define the audience for your examples. For example, are these begin-
ners who only know some basics programming concepts? Or are these
learners with some experience in programming but not in Python?

3. Show your example to a partner, but do not tell them what level it is
intended for. Once they have filled in the blanks, ask them what level
they think it is for.

If there are people among the trainees who don’t program at all, try to
place them in different groups, and have them play the part of learners for

37

those groups. Alternatively, choose a different problem domain and develop
a faded example for it.

Classifying Load (small groups/15 minutes)

Working in groups of 3–4, choose a short lesson that one of you has taught
or taken recently, make a point-form list of the ideas, instructions, and
explanations it contains, and then classify each as intrinsic, germane, or
extraneous. (The exercise “Noticing Your Blind Spot” in Section 3.5 will
give you an idea of how detailed your point-form list should be.)

Create a Parsons Problem (pairs/20 minutes)

Write five or six lines of code that does something useful, jumble them, and
ask your partner to put them in order. If you are using an indentation-based
language like Python, do not indent any of the lines; if you are using a
curly-brace language like Java, do not include any of the curly braces. Again,
if your group includes people who aren’t programmers, try using a different
problem domain, such as making guacamole.

Minimal Manuals (individual/20 minutes)

Write a one-page guide to doing something simple that your learners might
encounter in one of your classes, such as centering text horizontally or
printing a number with a certain number of digits after the decimal points.
Try to list at least three or four incorrect behaviors or outcomes the learner
might see, and include a one- or two-line explanation of why each happens
and how to correct it (i.e., go from symptoms to cause to fix).

Cognitive Apprenticeship (pairs/15 minutes)

Pick a small coding problem (something you can do in two or three minutes)
and think aloud as you work through it while your partner asks questions
about what you’re doing and why. As you work, do not just comment on
what you’re doing, but also on why you’re doing it, how you know it’s the
right thing to do, and what alternatives you’ve considered but discarded.
When you are done, swap roles with your partner and repeat the exercise.

Critiquing Graphics (individual/30 minutes)

[Maye2009] presents six principles for designing good diagrams for teaching.
As summarized in [Mill2016a], they are:

Signalling: visually highlight the most important points that you want
students to retain so that they stand out from less-critical material.

38

Spatial contiguity: if using captions or other text to accompany graphics,
place them as close to the graphics as practical to offset the cost of shifting
between the two. If using diagrams or animations, place captions right
next to relative components instead of putting them in one big block of
text.

Temporal contiguity: present spoken narration and graphics as close in
time as practical—presenting both at once is better than presenting them
one after another.

Segmenting: when presenting a long sequence of material or when stu-
dents are inexperienced with the subject, break up the presentation into
shorter segments and let students control how quickly they advance from
one part to the next.

Pretraining: if students don’t know the major concepts and terminology
used in your presentation, set up a module just to teach those concepts
and terms and make sure they complete that module beforehand.

Modality: students learn better from pictures plus audio narration than
from pictures plus text, unless there are technical words or symbols, or
the students are non-native speakers.

Choose a video of a lesson or talk online that uses slides or other static
presentations, and rate its graphics as “poor”, “average”, or “good” according
to these six criteria.

39

5 Individual Learning

After reading this chapter, you will be able to. . .

• Explain what metacognition is and why it is important to learning.
• Explain what near and far transfer are, and correctly identify which

one occurs most often.
• Name and explain six strategies learners can use to accelerate their

learning.
• Explain why working long hours reduces productivity.
• Define calibrated peer review and explain its benefits for learning.
• List common myths about computing education.

The previous three chapters have looked at what instructors can do to
help their learners. This chapter looks at what learners can do for themselves
by changing their study strategies and getting enough rest.

The key to getting more out of learning is metacognition, or thinking
about one’s own thinking processes. Just as good musicians listen to their
own playing, and good teachers reflect on their teaching (Chapter 8), learn-
ers will learn better and faster if they make plans, set goals, and monitor
their progress. It’s difficult for learners to master these skills in the abstract—
for example, just telling them to make plans doesn’t have any effect—but
lessons can be designed to encourage certain study practices, and drawing
attention to these practices in class helps them realize that learning is a skill
that can be improved like any other [McGu2015, Miya2018].

The big prize is transfer of learning, which occurs when one thing we
have learned helps us learn something else more quickly. Researchers distin-
guish between near transfer, which occurs between similar or related areas
like fractions and decimals, or loops in different programming languages,
and far transfer, which occurs between dissimilar domains—the idea that
learning to play chess will help mathematical reasoning or vice versa.

Near transfer undoubtedly occurs—no kind of learning beyond simple
memorization could occur if it didn’t—and instructors leverage it all the
time by giving learners exercises that are close in form or content to what
has just been presented in a lesson. However, [Sala2017] recently analyzed

41

many studies of far transfer and concluded that while we might want to
believe in it:

. . . the results show small to moderate effects. However, the effect sizes are
inversely related to the quality of the experimental design. . . We conclude
that far transfer of learning rarely occurs.

When far transfer does occur, it seems to happen only once a subject has
been mastered [Gick1987]. In practice, this means that learning to program
won’t help you play chess and vice versa.

5.1 Six Strategies

Psychologists study learning in a wide variety of ways, but have reached
similar conclusions about what actually works [Mark2018]. The Learning
Scientists1 have catalogued six of these strategies and summarized them in
a set of downloadable posters2. Teaching these strategies to students, and
mentioning them by name when you use them in class, can help them learn
how to learn faster and better [Wein2018].

Spaced Practice

Ten hours of study spread out over five days is more effective than two
five-hour days, and far better than one ten-hour day. You should therefore
create a study schedule that spreads study activities over time: block off at
least half an hour to study each topic each day rather than trying to cram
everything in the night before an exam [Kang2016].

You should also review material after each class (but not immediately
after—take at least a half-hour break). When reviewing, be sure to include
at least a little bit of older material: for example, spend 20 minutes looking
over notes from that day’s class, and then 5 minutes each looking over
material from the previous day and from a week before. (Doing this also
helps you catch any gaps or mistakes in previous sets of notes while there’s
still time to correct them or ask questions: it’s painful to realize the night
before the exam that you have no idea why you underlined “Demodulate!!”
three times.)

When reviewing, make notes about things that you had forgotten: for
example, make a flash card for each fact that you couldn’t remember, or
that you remembered incorrectly. This will help you focus the next round of
study on things that most need attention.

1http://www.learningscientists.org/
2http://www.learningscientists.org/downloadable-materials

42

http://www.learningscientists.org/
http://www.learningscientists.org/downloadable-materials

The Value of Lectures

According to [Mill2016a], “The lectures that predominate in face-to-
face courses are relatively ineffective ways to teach, but they probably
contribute to spacing material over time, because they unfold in a
set schedule over time. In contrast, depending on how the courses
are set up, online students can sometimes avoid exposure to material
altogether until an assignment is nigh.”

Retrieval Practice

Researchers now believe that the limiting factor for long-term memory is
not retention (what is stored), but recall (what can be accessed). Recall of
specific information improves with practice, so outcomes in real situations
can be improved by taking practice tests or summarizing the details of a
topic from memory and then checking what was and wasn’t remembered.
For example, [Karp2008] found that repeated testing improved recall of
word lists from 35% to 80%.

Research also shows that recall is better when practice uses activities
similar to those used in testing; for example, writing personal journal entries
helps with multiple-choice quizzes, but less than doing multiple-choice
quizzes [Mill2016a]. This is called transfer-appropriate processing.

One way to exercise retrieval skills is to solve problems twice. The first
time, do it entirely from memory without notes or discussion with peers.
After grading your own work against a rubric supplied by the instructor,
solve the problem again using whatever resources you want. The difference
between the two shows you how well you were able to retrieve and apply
knowledge.

Another method (mentioned above) is to create flash cards. In physical
form, a question or other prompt is written on one side, and the answer
is written on the other; in digital form, these are ideal for deployment on
mobile devices like phones. If you are studying as part of a group, you can
exchange flash cards with a partner; this also helps you discover important
ideas that you may have missed or misunderstood.

A quicker version of this is read-cover-retrieve: as you read something,
cover up key terms or sections with small sticky notes. When you are done,
go through it a second time and see how well you can guess what’s under
each of those stickies.

Whatever method you use, don’t just practice recalling facts and defini-
tions: make sure you also check your understanding of big ideas and the
connections between them. Sketching a concept map and then comparing
it to your notes or to a previously-drawn concept map is a quick way to do
this.

43

Hypercorrection

One powerful finding in learning research is the hypercorrection ef-
fect [Metc2016]. Most people don’t like to be told they’re wrong, so
it’s reasonable to assume that the more confident someone is that the
answer they’ve given in a test is correct, the harder it is to change
their mind if they were actually wrong. However, it turns out that the
opposite is true: the more confident someone is that they were right,
the more likely they are not to repeat the error if they are corrected.

Interleaving

One way you can space your practice is to interleave study of different
topics: instead of mastering one subject, then the next, then a third, shuffle
study sessions. Even better, switch up the order: A-B-C-B-A-C is better
than A-B-C-A-B-C, which in turn is better than A-A-B-B-C-C [Rohrer2015].
This is effective because interleaving fosters creation of more links between
different topics, which in turn increases retention and recall.

How long you should spend on each item depends on the subject and
how well you know it, but somewhere between 10 and 30 minutes is long
enough for you to get into a state of flow (Section 5.2) but not for your
mind to wander. Interleaving study will initially feel harder than focusing
on one topic at a time, but that’s a sign that it’s working. If you are making
flash cards for yourself, or doing practice tests, you should see improvement
after only a couple of days.

Elaboration

Explaining things to yourself as you go through them helps you understand
and remember them. One way to do this is to follow up each answer
on a practice quiz with an explanation of why that answer is correct, or
conversely with an explanation of why some other plausible answer isn’t.
Another is to tell yourself how a new idea is similar to or different from one
that you have seen previously.

Talking to yourself may seem like an odd way to study, but [Biel1995]
explicitly trained people in self-explanation, and yes, they outperformed
those who hadn’t been trained. An exercise that builds on this is to go
through code line by line with a group, having a different person to explain
each line in turn and say why it is there and what it accomplishes.

[Chi1989] found that some learners simply halt when they hit an un-
explained step (or a step whose explanation they don’t understand) when
doing mechanics problems in a physics class. Others who pause their “ex-
ecution” of the example to generate an explanation of what’s going on

44

learn faster. Instructors should therefore demonstrate the latter strategy to
learners.

Explaining things to others even works on exams, though the extent of
the benefits are still being studied. [Cao2017a, Cao2017b] looked at two-
stage exams, i.e., a normal (individual) exam which is then immediately
followed by a second exam in which students work in small groups to solve
a set of problems. They found significant short-term gains for students
doing exams collaboratively, but not long-term gains, i.e., the benefits visible
a couple of weeks after the mid-term had faded by the final. They also
found that students in the middle of the class benefited strongly, and that
homogeneous-ability groups benefited, while heterogeneous groups did not.

Concrete Examples

One specific form of elaboration is so useful that it deserves its own heading,
and that is the use of concrete examples. Whenever you have a statement
of a general principle, try to provide one or more examples of its use, or
conversely take each particular problem and list the general principles it
embodies. [Raws2014] found that interleaving examples and definitions
made it more likely that learners would remember the latter correctly.

One structured way to do this is the ADEPT method3: give an Analogy,
draw a Diagram, present an Example, describe the idea in Plain language,
and then give the Technical details. Again, if you are studying with a partner
or in a group, you can swap and check work: see if you agree that other
people’s examples actually embody the principle being discussed, or which
principles are used in an example that they haven’t listed.

Another useful technique is to teach by contrast, i.e., to show learners
what a solution is not, or what kind of problem a technique won’t solve. For
example, when showing children how to simplify fractions, it’s important to
give them a few like 5/7 that can’t be simplified so that they don’t become
frustrated looking for answers that don’t exist.

Dual Coding

The last of the six core strategies that the Learning Scientists4 describe is to
present words and images together. As discussed in Section 4.1, different
subsystems in our brains handle and store linguistic and visual information,
and if complementary information is presented through both channels,
then they can reinforce one another. However, learning is more effective
when the same information is not presented simultaneously in two different
channels [Maye2003], because then the brain has to expend effort to check
the channels against each other.

3https://betterexplained.com/articles/adept-method/
4http://www.learningscientists.org/

45

https://betterexplained.com/articles/adept-method/
http://www.learningscientists.org/

One way to take advantage of dual coding is to draw or label timelines,
maps, family trees, or whatever else seems appropriate to the material. (I
am personally fond of pictures showing which functions call which other
functions in a program.) Drawing a diagram without labels, then coming
back later to label it, is excellent retrieval practice.

5.2 Time Management

I used to brag about the hours I was working. Not in so many words, of
course—I had some social skills—but I would show up for class around noon,
unshaven and yawning, and casually mention how I’d been up working ’til
6:00 a.m.

Looking back, I can’t remember who I was trying to impress. Instead,
what I remember is how much of the work I id in those all-nighters I threw
away once I’d had some sleep, and how much damage the stuff I didn’t
throw away did to my grades.

My mistake was to confuse “working” with “being productive”. You can’t
produce software (or anything else) without doing some work, but you can
easily do lots of work without producing anything of value. Convincing
people of this can be hard, especially when they’re in their teens or twenties,
but pays tremendous dividends.

Scientific study of overwork and sleep deprivation goes back to at least
the 1890s (see [Robi2005] for a short, readable summary). The most
important results for learners are:

1. Working more than eight hours a day for an extended period of time
lowers your total productivity, not just your hourly productivity—i.e.,
you get less done in total (not just per hour) when you’re in crunch
mode than you do when you work regular hours.

2. Working over 21 hours in a stretch increases the odds of you making a
catastrophic error just as much as being legally drunk.

3. Productivity varies over the course of the workday, with the greatest
productivity occurring in the first four to six hours. After enough hours,
productivity approaches zero; eventually it becomes negative.

These facts have been reproduced and verified for over a century, and
the data behind them is as solid as the data linking smoking to lung cancer.
The catch is that people usually don’t notice their abilities declining. Just like
drunks who think they’re still able to drive, people who are deprived of
sleep don’t realize that they’re not finishing their sentences (or thoughts).
Five eight-hour days per week has been proven to maximize long-term
total output in every industry that has ever been studied; studying or
programming are no different.

But what about short bursts now and then, like pulling an all-nighter to
meet a deadline? That has been studied too, and the results aren’t pleasant.

46

Your ability to think drops by 25% for each 24 hours you’re awake. Put it
another way, the average person’s IQ is only 75 after one all-nighter, which
puts them in the bottom 5% of the population. Two all nighters in a row,
and their effective IQ is 50, which is the level at which people are usually
judged incapable of independent living.

When You Just Can’t Say No

Research has shown that our ability to exert willpower runs out, just
like our ability to use muscles: if we have to resist eating the last donut
on the tray when we’re hungry, we are less likely to fold laundry and
vice versa. This is called ego depletion [Mill2016a], and an effective
counter is to build up habits so that doing the right thing is automatic.

“But—but—we have so many assignments to do!”, your learners say.
“And they’re all due at once! We have to work extra hours to get them all
done!” No: in order to be productive, they have to prioritize and focus,
and in order to do that, they have to be taught how. One widely-used
technique is to make a list of things that need to be done, sort them by
priority, and then switch off email and other interruptions for 30-60 minutes
and complete one of those tasks. If any task on a to-do list is more than an
hour long, break it down into smaller pieces and prioritize those separately.

The most important part of this is switching off interruptions. De-
spite what many people want to believe, people are not good at multi-
tasking. What we can become good at is automaticity, which is the ability
to do something routine in the background while doing something else
[Mill2016a]. Most of us can talk while chopping onions, or drink coffee
while reading; with practice, we can also take notes while listening, but
we can’t study effectively, program, or do other mentally challenging tasks
while paying attention to something else.

The point of all this organization and preparation is to get into the most
productive mental state possible. Psychologists call it flow [Csik2008]; ath-
letes call it “being in the zone”, while musicians talk about losing themselves
in what they’re playing. Whatever name you use, people produce much
more per unit of time in this state than normal.

That’s the good news. The bad news is that it takes roughly ten minutes
to get back into a state of flow after an interruption, no matter how short
the interruption was. This means that if you are interrupted half a dozen
times per hour, you are never at your productive peak.

5.3 Peer Assessment

Asking people on a team to rate their peers is a common practice in in-
dustry. [Sond2012] surveyed the literature on student peer assessment,

47

distinguishing between grading and reviewing. The benefits they found
included increasing the amount, diversity, and timeliness of feedback, help-
ing students exercise higher-level thinking, encouraging reflective practice,
and supporting development of social skills. The concerns were predictable:
validity and reliability, motivation and procrastination, trolls, collusion,
and plagiarism. However, while these concerns are legitimate, the evi-
dence shows that they aren’t significant in class. For example, [Kauf2000]
compared confidential peer ratings and grades on several axes for two un-
dergraduate engineering courses and found that self-rating and peer ratings
statistically agreed, that collusion (i.e., everyone giving their peers the same
grades) wasn’t significant, that students didn’t inflate their self-ratings, and
crucially, that ratings were not biased by gender or race.

One important variation on peer assessment and review is contributing
student pedagogy, in which students produce artifacts to contribute to
other students’ learning. This can be developing a short lesson and sharing
it with the class, adding to a question bank, or writing up notes from a
particular lecture for in-class publication. For example, [Fran2018] found
that students who made short videos to teach concepts to their peers had
a significant increase in their own learning compared to those who only
studied the material or viewed the videos.

Another is calibrated peer review, in which a student reviews one
or more examples using a rubric and compares their evaluation against
the instructor’s review of the same work [Kulk2013]. Only once student’s
evaluations are close enough to the instructor’s are they allowed to start
evaluating peers’ actual work.

As long as evaluation is based on observables, rather than personality
traits, peer assessment can actually be as accurate as assessment by TAs and
other outsiders. “Observables” means that instead of asking, “Is the person
outgoing,” or “Does the person have a positive attitude,” assessments should
ask, “Does the person listen attentively during meetings,” or, “Does the
person attempt to solve problems before asking for help.” The evaluation
form in Appendix K shows a sample to get you started. To use it, rank
yourself and each of your teammates, then calculate and compare scores.

5.4 Exercises

Learning Strategies (individual/20 minutes)

1. Which of the six learning strategies do you regularly use? Which ones
do you not?

2. Write down three general concepts that you want your learners to
master, and then give two specific examples of each. (This uses the
“concrete examples” practice).

48

3. For each of those concepts, work backward from one of your examples
to explain how the concept explains it. (This uses the “elaboration”
practice).

Connecting Ideas (pairs/5 minutes)

This is an exercise is an example of using elaboration to improve retention.
Pick a partner, and have each person independently choose an idea, then
announce your ideas and try to find a four-link chain that leads from one to
the other. For example, if the two ideas are “Saskatchewan” and “statistics”,
the links might be:

• Saskatchewan is a province of Canada;
• Canada is a country;
• countries have governments;
• governments are elected; and
• people try to predict election results using statistics

Convergent Evolution (pairs/15 minutes)

One practice that wasn’t covered above is guided notes, which are
instructor-prepared notes that cue students to respond to key information
in a lecture or discussion. The cues can be blank spaces where students add
information, asterisks next to terms students should define, etc.

Create 2–4 guided note cards for a lesson you have recently taught or are
going to teach. Swap cards with your partner: how easy is it to understand
what is being asked for? How long would it take to fill in the prompts?

Changing Minds (pairs/10 minutes)

[Kirs2013] argues that myths about digital natives, learning styles, and
self-educators are all reflections of the mistaken belief that learners know
what is best for them, and cautions that we may be in a downward spiral in
which every attempt by education researchers to rebut these myths confirms
their opponents’ belief that learning science is pseudo-science. Pick one
thing you have learned about learning so far in this book that surprised you
or contradicted something you previously believed, and practice explaining
it to a partner in 1–2 minutes. How convincing are you?

Flash Cards (individual/15 minutes)

Use sticky notes or anything else you have at hand to make up a dozen flash
cards for a topic you have recently taught or learned, trade with a partner,
and see how long it takes each of you to achieve 100% perfect recall. When
you are done, set the cards aside, then come back after an hour and see
what your recall rate is.

49

Using ADEPT (whole class/15 minutes)

Pick something you have recently taught or been taught and outline a short
lesson that uses the five-step ADEPT method to introduce it.

The Cost of Multi-Tasking (pairs/10 minutes)

The Learning Scientists5 blog describes a simple experiment you can do
without preparation or equipment other than a stopwatch to demonstrate
the mental cost of multi-tasking. Working in pairs, measure how long it
takes each person to do each of these three tasks:

• Count from 1 to 26.
• Recite the alphabet from A to Z.
• Interleave the numbers and letters, i.e., say, “1, A, 2, B, . . . ” and so on.

Have each pair report their numbers: you will probably find that the
third (in which you are multi-tasking) takes significantly longer than either
of the component tasks.

Myths in Computing Education (small groups/20 minutes)

Working in groups of 3–4, vote on which of the following statements are
true or false. When you are done, check your answers against [Guzd2015b]
(which you can read online6).

1. The lack of women in Computer Science is just like all the other STEM
fields.

2. To get more women in CS, we need more female CS faculty.
3. Student evaluations are the best way to evaluate teaching.
4. Good teachers personalize education for students’ learning styles.
5. A good CS teacher should model good software development practice,

because their job is to produce excellent software engineers.
6. Some people are just naturally better programmers than others.

Calibrated Peer Review (pairs/20 minutes)

1. Create a 5–10 point rubric for grading programs of the kind you would
like your learners to write that has entries like “good variable names”,
“no redundant code”, and “properly-nested control flow”.

2. Choose or create a small program that contains 3–4 violations of these
entries.

3. Grade the program according to your rubric.

5http://www.learningscientists.org/blog/2017/7/28-1
6https://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-
science/fulltext

50

http://www.learningscientists.org/blog/2017/7/28-1
https://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-science/fulltext
https://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-science/fulltext

4. Have your partner grade the same program with the same rubric. What
do they accept that you did not? What do they critique that you did
not?

Top Ten Myths (whole class/15 minutes)

[Guzd2015b] presents a list of the top 10 mistaken beliefs about computing
education. His list of things that many people believe, but which aren’t true,
is:

1. The lack of women in Computer Science is just like all the other fields
of science, technology, engineering, and medicine.

2. To get more women in CS, we need more female CS faculty.
3. A good CS teacher is a good lecturer.
4. Clickers and the like are an add-on for a good teacher.
5. Student evaluations are the best way to evaluate teaching.
6. Good teachers personalize education for students’ learning styles.
7. High schools just can’t teach CS well, so they shouldn’t do it at all.
8. The real problem is to get more CS curriculum into the hands of teach-

ers.
9. All I need to do to be a good CS teacher is model good software

development practice, because my job is to produce excellent software
engineers.

10. Some people are just born to program.

Have everyone vote +1 (agree), -1 (disagree), or 0 (not sure) for each
point, then read the full explanations in the original article7) and vote again.
Which ones did people change their minds on? Which ones do they still
believe are true, and why?

7https://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-
science/fulltext

51

https://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-science/fulltext
https://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-science/fulltext

Part II

Lesson Design

53

6 A Lesson Design Process

After reading this chapter, you will be able to. . .

• Describe the steps in backward lesson design and explain why it
generally produces better lessons than the more common forward
development process.

• Define “teaching to the test” and explain why backward lesson
design is not the same thing.

• Construct and critique five-part learner personas.
• Construct good learning objectives and critique learning objectives

with reference to Bloom’s Taxonomy and/or Fink’s Taxonomy.

Most people design lessons like this:

1. Someone asks you to teach something you haven’t thought about in
years.

2. You start writing slides to explain what you know about the subject.
3. After two or three weeks, you make up an assignment based more or

less on what you’ve taught so far.
4. You repeat step 3 several times.
5. You stay awake into the wee hours of the morning to create a final

exam and promise yourself that you’ll be more organized next time.

There’s a better way, but to explain it, we first need to explain how test-
driven development (TDD) is used in software development. Programmers
who are using TDD don’t write software and then write tests to check that
the software is doing the write thing. Instead, they write the tests first, then
write just enough new software to make those tests pass, and then clean up
a bit.

TDD works because writing tests forces programmers to specify exactly
what they’re trying to accomplish and what “done” looks like. It’s easy to
be vague when using a human language like English or Korean; it’s much
harder to be vague in Python or R. TDD also reduces the risk of endless
polishing, and the risk of confirmation bias: someone who hasn’t written a
program is much more likely to be objective when testing it than its original

55

author, and someone who hasn’t written a program yet is more likely to test
it objectively than someone who has just put in several hours of hard work
and really, really wants to be done.

A similar backward method works very well for lesson design. This
method is something called backward design; developed independently in
[Wigg2005, Bigg2011, Fink2013], it is summarized in [McTi2013], and in
simplified form, its steps are:

1. Brainstorm to get a rough idea of what you want to cover, how you’re
going to do it, what problems or misconceptions you expect to en-
counter, what’s not going to be included, and so on. You may also want
to draw some concept maps at this stage.

2. Create or recycle learner personas (discussed in the next section) to
figure out who you are trying to teach and what will appeal to them.
(This step can also be done first, before the brainstorming.)

3. Create formative assessments that will give the learners a chance to
practice the things they’re trying to learn and tell you and them whether
they’re making progress and where they need to focus their work.

4. Put the formative assessments in order based on their complexity and
dependencies to create a course outline.

5. Write just enough to get learners from one formative assessment to the
next. Each hour in the classroom will then consist of three or four such
episodes.

This method helps to keep teaching focused on its objectives. It also
ensures that learners don’t face anything on the final exam that the course
hasn’t prepared them for. It is not the same thing as “teaching to the test”.
When using backward design, teachers set goals to aid in lesson design, and
may never actually give the final exam that they wrote. In many school
systems, on the other hand, an external authority defines assessment criteria
for all learners, regardless of their individual situations. The outcomes of
those summative assessments directly affect the teachers’ pay and promotion,
which means teachers have an incentive to focus on having learners pass
test rather than on helping them learn.

Measure. . . And Then?

[Gree2014] argues that this focus on measurement is appealing to
those with the power to set the tests, but unlikely to improve outcomes
unless it is coupled with support for teachers to make improvements
based on test outcomes. The latter is often missing because large
organizations usually value uniformity over productivity [Scot1998];
we will return to this topic in Chapter 8.

It’s important to note that while lesson design is described as a sequence,
it’s almost never done that way: we may, for example, change our mind

56

about what we want to teach based on something that occurs to us while
we’re writing an MCQ, or re-assess who we’re trying to help once we have a
lesson outline. However, it’s important that the notes we leave behind to
present things in the order described above, because that’s the easier way
for whoever has to use or maintain the lesson to retrace our thinking. The
same rewriting of history is useful for the same reasons in software design
and many other fields [Parn1986].

Appendix M presents the design notes for this version of this book. A few
things have been added, dropped, or rearranged, but what you are reading
now matches the plan pretty closely.

6.1 Learner Personas

A key step in the lesson design process described above is figuring out
who your audience is. One way to do this is to write two or three learner
personas. This technique is borrowed from user interface designers, who
create short profiles of typical users to help them think about their audience.

Learner personas have five parts: the person’s general background, what
they already know, what they think they want to do (as opposed to what
someone who already understands the subject thinks), how the course
will help them, and any special needs they might have. The personas in
Section 1.1 have the five points listed above, rearranged to flow more
readably; a learner persona for a weekend workshop aimed at college
students might be:

1. Jorge has just moved from Costa Rica to Canada to study agricultural
engineering. He has joined the college soccer team, and is looking
forward to learning how to play ice hockey.

2. Other than using Excel, Word, and the Internet, Jorge’s most signifi-
cant previous experience with computers is helping his sister build a
WordPress site for the family business back home in Costa Rica.

3. Jorge needs to measure properties of soil from nearby farms using a
handheld device that sends logs in a text format to his computer. Right
now, Jorge has to open each file in Excel, crop the first and last points,
and calculate an average.

4. This workshop will show Jorge how to write a little Python program to
read the data, select the right values from each file, and calculate the
required statistics.

5. Jorge can read English well, but still struggles sometimes to keep up
with spoken conversation (especially if it involves a lot of new jargon).

A Gentle Reminder

When designing lessons, you must always remember that you are not

57

your learners. You may be younger (if you’re teaching seniors) or
wealthier (and therefore able to afford to download videos without
foregoing a meal to pay for the bandwidth), but you are almost certainly
more knowledgeable about technology. Don’t assume that you know
what they need or will understand: ask them, and pay attention to
their answer. After all, it’s only fair that learning should go both ways.

Rather than writing new personas for every lesson or course, it’s common
for teachers to create and share a handful that cover everyone they are likely
to teach, then pick a few from that set to describe who particular material is
intended for. When personas are used this way, they become a convenient
shorthand for design issues: when speaking with each other, teachers can
say, “Would Jorge understand why we’re doing this?” or, “What installation
problems would Jorge face?”

Brainstorming the broad outlines of what you’re going to teach and then
deciding who you’re trying to help is one approach; it’s equally valid to
pick an audience and then brainstorm their needs. Either way, [Guzd2016]
offers the following guidance:

1. Connect to what learners know.
2. Keep cognitive load low.
3. Use authentic tasks (see Section 10.1).
4. Be generative and productive.
5. Test your ideas rather than trusting your instincts.

Of course, one size won’t fit all. [Alha2018] reported improvement in
learning outcomes and student satisfaction in a course for students from a
variety of academic backgrounds which allowed them to choose between
different domain-related assignments. It’s extra work to set up and grade,
but that’s manageable if the projects are open-ended (so that they can be
used repeatedly) and if the load is shared with other teachers (Section 6.3).
Other work has shown that building courses for science students around
topics as diverse as music, data science, and cell biology will also improve
outcomes [Pete2017, Dahl2018, Ritz2018].

6.2 Learning Objectives

Formative and summative assessments help teachers figure out what they’re
going to teach, but in order to communicate that to learners and other
teachers, a course description should also have learning objectives. These
help ensure that everyone has the same understanding of what a lesson is
supposed to accomplish. For example, a statement like “understand Git”
could mean any of the following, each of which would be backed by a very
different lesson:

58

• Learners can describe three scenarios in which version control systems
like Git are better than file-sharing tools like Dropbox, and two in which
they are worse.

• Learners can commit a changed file to a Git repository using a desktop
GUI tool.

• Learners can explain what a detached HEAD is and recover from it using
command-line operations.

Objectives vs. Outcomes

A learning objective is what a lesson strives to achieve. A learning
outcome is what it actually achieves, i.e., what learners actually take
away. The role of summative assessment is therefore to compare
learning outcomes with learning objectives.

A learning objective is a single sentence describing how a learner will
demonstrate what they have learned once they have successfully completed
a lesson. More specifically, it has a measurable or verifiable verb that states
what the learner will do, and specifies the criteria for acceptable performance.
Writing these kinds of learning objectives may initially seem restrictive or
limiting, but will make you, your fellow teachers, and your learners happier
in the long run. You will end up with clear guidelines for both your teaching
and assessment, and your learners will appreciate the clear expectations.

One way to understand what makes for a good learning objective is to
see how a poor one can be improved:

• “The learner will be given opportunities to learn good programming
practices.” This describes the lesson’s content, not the attributes of
successful students.

• “The learner will have a better appreciation for good programming
practices.” This doesn’t start with an active verb or define the level of
learning, and the subject of learning has no context and is not specific.

• “The learner will understand how to program in R.” While this starts
with an active verb, it doesn’t define the level of learning, and the subject
of learning is still too vague for assessment.

• “The learner will write one-page data analysis scripts to read, filter,
summarize, and print results for tabular data using R and R Studio.”
This starts with an active verb, defines the level of learning, and provides
context to ensure that outcomes can be assessed.

When it comes to choosing verbs, many teachers use Bloom’s taxon-
omy. First published in 1956, it was updated at the turn of the century
[Ande2001], and is the most widely used framework for discussing levels of
understanding. Its most recent form has six categories; the list below de-
fines each, and gives a few of the verbs typically used in learning objectives
written for each:

59

Remembering: Exhibit memory of previously learned material by recalling
facts, terms, basic concepts, and answers. (recognize, list, describe, name,
find)

Understanding: Demonstrate understanding of facts and ideas by organiz-
ing, comparing, translating, interpreting, giving descriptions, and stating
main ideas. (interpret, summarize, paraphrase, classify, explain)

Applying: Solve new problems by applying acquired knowledge, facts,
techniques and rules in a different way. (build, identify, use, plan, select)

Analyzing: Examine and break information into parts by identifying mo-
tives or causes. Make inferences and find evidence to support generaliza-
tions. (compare, contrast, simplify)

Evaluating: Present and defend opinions by making judgments about in-
formation, validity of ideas, or quality of work based on a set of criteria.
(check, choose, critique, prove, rate)

Creating: Compile information together in a different way by combining
elements in a new pattern or proposing alternative solutions. (design,
construct, improve, adapt, maximize, solve)

[Masa2018] found that even experienced educators have trouble agree-
ing on how to classify a question or idea according to Bloom’s Taxonomy,
but the material in most introductory programming courses fits into the first
four of these levels; only once that material has been mastered can learners
start to think about evaluating and creating. (As Daniel Willingham has
said, people can’t think without something to think about [Will2010].)

Another way to think about learning objectives comes from [Fink2013],
which defines learning in terms of the change it is meant to produce in the
learner. Fink’s Taxonomy also has six categories, but unlike Bloom’s, they
are complementary rather than hierarchical:

Foundational Knowledge: understanding and remembering information
and ideas. (remember, understand, identify)

Application: skills, critical thinking, managing projects. (use, solve, calcu-
late, create)

Integration: connecting ideas, learning experiences, and real life. (connect,
relate, compare)

Human Dimension: learning about oneself and others. (come to see them-
selves as, understand others in terms of, decide to become)

Caring: developing new feelings, interests, and values. (get excited about,
be ready to, value)

Learning How to Learn: becoming a better student. (identify source of
information for, frame useful questions about)

A set of learning objectives based on this taxonomy for an introductory
course on HTML and CSS might be:

60

By the end of this course, learners will be able to:

• Explain the difference between markup and presentation, what CSS
properties are, and how CSS selectors work.

• Write and style a web page using common tags and CSS properties.
• Compare and contrast authoring with HTML and CSS to authoring

with desktop publishing tools.
• Identify issues in sample web pages that would make them difficult

for the visually impaired to interact with and provide appropriate
corrections.

• Explain the role that JavaScript plays in styling web pages and want
to learn more about how to use it.

6.3 Maintainability

It takes a lot of effort to create a good lesson, but once it has been built,
someone needs to maintain it, and doing that is a lot easier if it has been built
in a maintainable way. But what exactly does “maintainable” mean? The
short answer is that a lesson is maintainable if it’s cheaper to update it than
to replace it. This equation depends on three factors. The first is how well
documented the course’s design is. If the person doing maintenance doesn’t
know (or doesn’t remember) what the lesson is supposed to accomplish or
why topics are introduced in a particular order, it will take her more time to
update it. One of the reasons to use the design process described earlier in
this chapter is to capture decisions about why each course is the way it is.

The second factor is how easy it is for collaborators to collaborate techni-
cally. Teachers usually share material by mailing PowerPoint files to each
other or putting them in a shared drive. Collaborative writing tools like
Google Docs1 and wikis are a big improvement, as they allow many people
to update the same document and comment on other people’s updates. The
version control systems used by programmers, such as GitHub2, are another
big advance, since they let any number of people work independently and
then merge their changes back together in a controlled, reviewable way.
Unfortunately, version control systems have a long, steep learning curve,
and (still) don’t handle common office document formats.

The third factor, which is the most important in practice, is how willing
people are to collaborate. The tools needed to build a “Wikipedia for lessons”
have been around for twenty years, but most teachers still don’t write
and share lessons the way that they write and share encyclopedia entries,
even though commons-based lesson development and maintenance actually
works very well (Section 13.4 and Section C.3).

1http://docs.google.com
2http://github.com

61

http://docs.google.com
http://github.com

[Leak2017] interviewed 17 computer science teachers to find out why
they don’t use resource sharing sites. They found that most of the reasons
were operational. For example, respondents said that sites need good
landing pages that ask “what is your current role?” and “what course and
grade level are you interested in?”, and should display all their resources in
context, since visitors may be new teachers who are struggling to connect
the dots themselves. They also said that sites should allow anonymous posts
on discussion forums to reduce fear of looking foolish in front of peers.

One interesting observation is that while teachers don’t collaborate at
scale, they do remix by finding other people’s materials online or in textbooks
and reworking them. That suggests that the root problem may be a flawed
analogy: rather than lesson development being like writing a Wikipedia
article or some open source software, perhaps it’s more like sampling in
music.

If this is true, then lessons may be the wrong granularity for sharing,
and collaboration might be more likely to take hold if the thing being
collaborated on was smaller. This fits well with Caulfield’s theory of choral
explanations3. He argues that sites like Stack Overflow4 succeed because
they provide a chorus of answers for every question, each of which is most
suitable for a slightly different questioner. If Caulfield is right, the lessons of
tomorrow may include guided tours of community-curated Q&A repositories
designed to accommodate learners at widely different levels.

6.4 Exercises

Create Learner Personas (small groups/30 minutes)

Working in small groups, create a five-point persona that describes one of
your typical learners.

Classify Learning Objectives (pairs/10 minutes)

Look at the example learning objectives given for an introductory course
on HTML and CSS in Section 6.2 and classify each according to Bloom’s
Taxonomy. Compare your answers with those of your partner: where did
you agree and disagree, and why?

Write Learning Objectives (pairs/20 minutes)

Write one or more learning objectives for something you currently teach or
plan to teach using Bloom’s Taxonomy. Working with a partner, critique and
improve the objectives.

3https://hapgood.us/2016/05/13/choral-explanations/
4https://stackoverflow.com/

62

https://hapgood.us/2016/05/13/choral-explanations/
https://stackoverflow.com/

Write More Learning Objectives (pairs/20 minutes)

Write one or more learning objectives for something you currently teach or
plan to teach using Fink’s Taxonomy. Working with a partner, critique and
improve the objectives.

Building Lessons by Subtracting Complexity (individual/20
minutes)

One way to build a programming lesson is to write the program you want
learners to finish with, then remove the most complex part that you want
them to write and make it the last exercise. You can then remove the next
most complex part you want them to write and make it the penultimate
exercise, and so on. Anything that’s left—i.e., anything you don’t want them
to write as an exercise—becomes the starter code that you give them. This
typically includes things like importing libraries and loading data.

Take a program or web page that you want your learners to be able to
create on their own at the end of a lesson and work backward to break it
into digestible parts. How many are there? What key idea is introduced by
each one?

Inessential Weirdness (individual/15 minutes)

Betsy Leondar-Wright coined the phrase “inessential weirdness5” to describe
things groups do that aren’t really necessary, but which alienate people who
aren’t members of that group. Sumana Harihareswara later used this notion
as the basis for a talk on inessential weirdnesses in open source software6,
which includes things like making disparaging comments about Microsoft
Windows, command-line tools with cryptic names, and the command line
itself. Take a few minutes to read these articles, then make a list of inessential
weirdnesses you think your learners might encounter when you first teach
them. How many of these can you avoid with a little effort?

PRIMM (individual/15 minutes)

One approach to introducing new ideas in computing is PRIMM7: Predict a
program’s behavior or output, Run it to see what it actually does, Investigate
why it does that (e.g., by stepping through it in a debugger or drawing the
flow of control), Modify it (or its inputs), and then Make something similar
from scratch. Pick something you have recently taught or been taught and
outline a short lesson that follows these five steps.
5http://www.classmatters.org/2006_07/its-not-them.php
6https://www.harihareswara.net/sumana/2016/05/21/0
7http://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-
programming/

63

http://www.classmatters.org/2006_07/its-not-them.php
https://www.harihareswara.net/sumana/2016/05/21/0
http://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/
http://blogs.kcl.ac.uk/cser/2017/09/01/primm-a-structured-approach-to-teaching-programming/

Evaluating Lessons (pairs/20 minutes)

[Mart2017] specifies eight dimensions along which lessons can be evaluated:

Closed vs. open: is there a well-defined path and endpoint, or are learners
exploring?

Cultural relevance: how well is the task connected to things they do out-
side class?

Recognition: how easily can the learner share the product of their work?
Space to play: seems to overlap closed vs. open
Driver shift: how often are learners in control of the learning experience

(tight cycles of “see then do” score highly)
Risk reward: to what extent is taking risks rewarded or recognized?
Grouping: is learning individual, in pairs, or in larger groups?
Session shape: theater-style classroom, dinner seating, free space, public

space, etc.

Working with a partner, go through a set of lessons you have recently
taught, or have recently been taught, and rate them as “low”, “medium”,
“high”, or “not applicable” on each of these criteria. Which two criteria are
most important to you personally as a teacher? As a learner?

Concrete-Representational-Abstract (pairs/15 minutes)

Concrete-Representational-Abstract8 (CRA) is another approach to introduc-
ing new ideas that is used primarily with younger learners. The first step
is the concrete stage, and involves physically manipulating objects to solve
a problem (e.g., piling blocks to do addition). In the the representational
stage, images are used to represent those objects, and in the final abstract
stage, the learner uses numbers or symbols.

1. Write each of the numbers 2, 7, 5, 10, 6 on a sticky note.
2. Simulate a loop that finds the largest value by looking at each in turn

(concrete).
3. Sketch a diagram of the process you used, labelling each step (repre-

sentational).
4. Write instructions that someone else could follow to go through the

same steps you used (abstract).
5. Compare your representational and abstract materials with those of

your partner.

8https://makingeducationfun.wordpress.com/2012/04/29/concrete-representational-
abstract-cra/

64

https://makingeducationfun.wordpress.com/2012/04/29/concrete-representational-abstract-cra/
https://makingeducationfun.wordpress.com/2012/04/29/concrete-representational-abstract-cra/

7 Actionable Approximations of the
Truth

After reading this chapter, you will be able to. . .

• Explain what pedagogical content knowledge (PCK) is and why it’s
important.

• Explain what the “superbug” in novice programming is, and at least
two other misconceptions novices often have.

• Describe what blocks-based programming tools are and why they
are easier for novices to learn than text-based systems.

• Describe the effects that error messages, variable naming, and
visualization have on novices’ performance.

• Summarize the effectiveness of various intervention strategies on
novice learning.

Every instructor needs three things:

• content knowledge, such as how to program;
• general pedagogical knowledge, such as an understanding of the psy-

chology of learning; and
• pedagogical content knowledge (PCK), which is the domain-specific

knowledge of how to teach a particular concept to a particular audience.

In computing, PCK includes things like what examples to use when
teaching how parameters are passed to a function, or what misconceptions
about nesting HTML tags are most common. This chapter summarizes some
results from research into teaching and learning programming that will add
to your store of PCK.

Computing education research is still a young discipline: while the
American Society for Engineering Education was founded in 1893, and the
National Council of Teachers of Mathematics in 1920, the Computer Science
Teachers Association didn’t exist until 2005. The simple truth is that we
don’t know as much about how people learn to program as we do about how
they learn to read, play a sport, or do basic arithmetic. However, conferences

65

like SIGCSE1, ITiCSE2 and ICER3 are delivering an ever-increasing stream of
rigorous, insightful studies with practical application. (For those interested
in methods these studies rely on, [Ihan2016] summarizes the ones used
most often.)

As with all research, though, some caution is required to interpret these
results. Most studies look at school children and university undergraduates,
both because those are the populations that researchers have easiest access
to [Henr2010] and because those are the ages at which people most often
learn to program; less is known about adults learning to program in free-
range settings.

Theories may change as more and better data becomes available, so if
this was an academic treatise, it would preface most claims with statements
like, “Research may seem to indicate that. . . ” However, since actual teachers
in actual classrooms have to make decisions regardless of whether research
has clear answers yet or not, this chapter presents actionable approximations
of the truth rather than nuanced perhapses.

Jargon

Like any specialty, computing education research has its jargon. The
term CS1 refers to an introductory semester-long programming course
in which learners meet variables, loops, and functions for the first time,
while CS2 refers to a second course that covers basic data structures
like stacks and queues. The term CS0 is also now being used to refer
to an introductory course for people without any prior experience who
aren’t intending to continue with computing (at least not right away).

A CS1 course is often useful for undergraduates in other disciplines;
a CS2 course designed for computer science learners is usually less
relevant for artists, ecologists, and other end-user programmers, but
is sometimes the only next step available at their institution. Full defi-
nitions for these terms and others can be found in the ACM Curriculum
Guidelinesa.
ahttps://www.acm.org/education/curricula-recommendations

7.1 How Do Novices Program?

[Solo1984, Solo1986] pioneered the exploration of novice and expert pro-
gramming strategies. The key finding is that experts know both “what”
and “how”, i.e., they understand what to put into programs and they have
a set of patterns or plans to guide their construction. Novices lack both,

1http://sigcse.org/
2http://iticse.acm.org/
3https://icer.hosting.acm.org

66

https://www.acm.org/education/curricula-recommendations
http://sigcse.org/
http://iticse.acm.org/
https://icer.hosting.acm.org

but most teachers focus solely on the former, even though bugs are often
caused by not having a strategy for solving the problem rather than to lack
of knowledge about the language.

The most important recommendation in this chapter is therefore to show
learners how to program. This is consistent with the work on cognitive load
theory presented in Chapter 4, and [Mull2007b] is just one of many studies
proving its benefits; live coding (Section 8.4) is effective in part because it
puts “how” front and center.

When demonstrating the act of programming, teachers should emphasize
the importance of small steps with frequent feedback [Blik2014]. They
should also emphasize the importance of picking a plan and sticking to
it rather than making more-or-less random changes to the program and
hoping that they’ll work—as [Spoh1985] found, merging plans and/or goals
can yield bugs because of goals being dropped or fragmented.

Another aspect of “how” that teachers should present and discuss is
the order in which code is written. [Ihan2011] describes a tool for solving
Parsons Problems. They found that experienced programmers often drag
the method signature to the beginning, then add the majority of the control
flow (i.e., loops and conditionals), and only then add details like variable
initialization and handling of corner cases. This out-of-order authoring is
foreign to novices, who read and write code in the order it’s presented on
the page; again, one of the benefits of live coding (Section 8.4) is that it
gives them a chance to see the sequence that more advanced programmers
actually use.

Roles of Variables

One body of work that I have found very useful in teaching program-
ming plans to novices is the collection of single-variable design patterns in
[Kuit2004, Byck2005, Saja2006]. labelling the parts of novices’ programs
gives them a vocabulary to think with and a set of programming plans for
constructing code of their own. The patterns are listed on the Roles of
Variables website4, which also includes examples of each:

Fixed value: A data item that does not get a new proper value after its
initialization.

Stepper: A data item stepping through a systematic, predictable succession
of values.

Walker: A data item traversing in a data structure.
Most-recent holder: A data item holding the latest value encountered in

going through a succession of unpredictable values, or simply the latest
value obtained as input.

4http://saja.kapsi.fi/var_roles/

67

http://saja.kapsi.fi/var_roles/

Most-wanted holder: A data item holding the best or otherwise most ap-
propriate value encountered so far.

Gatherer: A data item accumulating the effect of individual values.
Follower: A data item that gets its new value always from the old value of

some other data item.
One-way flag: A two-valued data item that cannot get its initial value once

the value has been changed.
Temporary: A data item holding some value for a very short time only.
Organizer: A data structure storing elements that can be rearranged.
Container: A data structure storing elements that can be added and re-

moved.

7.2 How Do Novices Debug and Test?

A decade ago, [McCa2008] wrote, “It is surprising how little page space
is devoted to bugs and debugging in most introductory programming text-
books.” Little has changed since: there are hundreds of books on compilers
and operating systems, but only a handful about debugging, and I have
never seen an undergraduate course on the subject. One reason is that
debugging is a “how” rather than a “what”; again, one of the benefits of live
coding is that it gives teachers a chance to demonstrate the process in a way
that textbooks cannot (Section 8.4).

[List2004, List2009] found that many novices struggled to predict the
output of short pieces of code and to select the correct completion of the
code from a set of possibilities when told what it was supposed to do. More
recently, [Harr2018] found that the gap between being able to trace code
and being able to write it has largely closed by CS2, but that novices who
still have a gap (in either direction) are likely to do poorly in the course.

Our second recommendation is therefore to teach novices how to debug.
[Fitz2008, Murp2008] found that good debuggers were good programmers,
but not all good programmers were good at debugging. those who were
used a symbolic debugger to step through their programs, traced execution
by hand, wrote tests, and re-read the spec frequently, which are all teach-
able habits. However, tracing execution step by step was sometimes used
ineffectively: for example, a novice might put the same print statement in
both parts of an if-else. Novices would also comment out lines that were
actually correct as they tried to isolate a problem; teachers can make both
of these mistakes deliberately, point them out, and correct them to help
novices get past them.

Teaching novices how to debug can also help make classes easier to
manage. [Alqa2017] found that learners with more experience solved
debugging problems significantly faster, but times varied widely: 4–10
minutes was a typical range for individual exercises, which means that
some learners need 2–3 times longer than others to get through the same

68

exercises. Teaching the slower learners what the faster ones are doing will
help make the group’s overall progress more uniform.

Debugging depends on being able to read code, which multiple stud-
ies have shown is the single most effective way to find bugs [Basi1987,
Keme2009, Bacc2013]. The code quality rubric developed in [Steg2014,
Steg2016a], which is online at [Steg2016b], is a good checklist of things to
look for, though it is best presented in chunks rather than all at once.

Having learners read code and summarize its behavior is a good exercise
(Section 5.1), but often takes too long to be practical in class. Having them
predict a program’s output just before it is run, on the other hand, helps
reinforce learning (Section 9.11) and also gives them a natural moment
to ask “what if” questions. Instructors or learners can also trace changes
to variables as they go along (Figure 7.1), which [Cunn2017] found was
effective.

numbers = [1, 3, -2, 5]
total = 0
positive = True
for current in numbers:
 if current < 0:
 positive = False
 if positive:
 total = total + current

total

positive

current

0

True

1

1

3

4

False

-2 5

Figure 7.1: Tracing the Values of Variables)

When it comes to testing, novices seem just as reluctant to do it as profes-
sional programmers. There’s no doubt it’s valuable—[Cart2017] found that
high-performing novices spent a lot of time testing, while low performers
spent much more time working on code with errors—and many instructors
require learners to write tests for assignments. The question is, how well do
they do this?

One answer comes from [Bria2015], which scored learners’ programs
by how many teacher-provided test cases those programs passed, and
conversely scores test cases written by learners according to how many
deliberately-seeded bugs they caught. They found that novices’ tests often
have low coverage (i.e., they don’t test most of the code) and that they often
test many things at once, which makes it hard to pinpoint the causes of
errors.

Another answer comes from [Edwa2014b], which looked at all of the
bugs in all novices’ code submissions combined and identified those detected

69

by the novices’ test suite. They found that novices’ tests only detected an
average of 13.6% of the faults present in the entire program population.
What’s more, 90% of the novices’ tests were very similar, which indicates that
novices mostly write tests to confirm that code is doing what it’s supposed
to rather than to find cases where it isn’t.

One approach to teaching better testing practices is to define a program-
ming problem by providing a set of tests to be passed rather than through
a written description (Section 12.1). Before doing this, though, take a mo-
ment to look at how many tests you’ve written for your own code recently,
and then decide whether you’re teaching what you believe people should
do, or what they (and you) actually do.

7.3 What Misconceptions Do Novices Have?

Chapter 2 explained why clearing up novices misconceptions is just as
important as teaching them strategies for solving problems. The biggest
misconception novices have—sometimes called the “superbug” in coding—is
the belief that they can communicate with a computer in the same way
that they would with a human being, i.e., that the computer understands
intention the way that a human being would [Pea1986]. Our third rec-
ommendation is therefore to teach novices that computers don’t understand
programs, i.e., that calling a variable “cost” doesn’t guarantee that its value
is actually a cost.

[Sorv2018] presents over 40 other misconceptions that instructors can
also try to clear up, many of which are also discussed in [Qian2017]’s survey.
One is the belief that variables in programs work the same way they do in
spreadsheets, i.e., that after executing:

grade = 65
total = grade + 10
grade = 80
print(total)

the value of total will be 90 rather than 75 [Kohn2017]. (This is an
example of the way in which novices construct a plausible-but-wrong mental
model by making analogies.) Other misconceptions include:

• A variable holds the history of the values it has been assigned, i.e., it
remembers what its value used to be.

• Two objects with the same value for a name or id attribute are guaranteed
to be the same object.

• Functions are executed as they are defined, or are executed in the order
in which they are defined.

70

• A while loop’s condition is constantly evaluated, and the loop stops as
soon as it becomes false. Conversely, the conditions in if statements are
also constantly evaluated, and their statements are executed as soon as
the condition becomes true, no matter where the flow of control is at the
time.

• Assignment moves values, i.e., after a = b, the variable b is empty.

Instead of looking directly at misconceptions, [Muhl2016] analyzed 350
concept maps and compared those who had done a CS course and those
who had not. Unsurprisingly, they found that the maps drawn by those
with previous experience looked more like the maps experts would draw,
but the details highlighted what exactly learners were taking away from
their lessons: “program” was a central concept in both sets of concept maps,
but the next most central for those with prior exposure were “class” (in the
object-oriented sense) and “data structure”, while for those without, they
were “processor” and “data”.

7.4 What Mistakes Do Novices Make?

The mistakes novices make can tell us what to prioritize in our teaching,
but it turns out that most teachers don’t know how common different kinds
of mistakes actually are. The largest study of this is [Brow2017]’s study of
novice Java programs, which found that Mismatched quotes and parentheses
are the most common type of error, but also the easiest to fix, while some
mistakes (like putting the condition of an if in {} instead of ()) are most
often made only once. Unsurprisingly, mistakes that produce compiler errors
are fixed much faster than ones that don’t.

Some mistakes, however, are made many times, like invoking methods
with the wrong arguments (e.g., passing a string instead of an integer). One
caution when reading this research is how important it is to distinguish
mistakes from work in progress: for example, an empty if statement or a
method that’s defined but not yet used may be a sign of incomplete code
rather than an error.

[Brow2017] also compared the mistakes novices actually make with
what their teachers thought they made. They found that, “. . . educators
formed only a weak consensus about which mistakes are most frequent,
that their rankings bore only a moderate correspondence to the students
in the. . . data, and that educators’ experience had no effect on this level of
agreement.” For example, mistaking = (assignment) and == (equality) in
loop condition tests wasn’t nearly as common as most teachers believed.

71

Not Just for Code

[Park2015] collected data from an online HTML editor during an in-
troductory web development course. Nearly all learners made syntax
errors that remained unresolved weeks into the course. 20% of these
errors related to the relatively complex rules that dictate when it is
valid for HTML elements to be nested in one another, but 35% related
to the simpler tag syntax determining how HTML elements are nested.
(The tendency of many instructors to say, “But the rules are simple,” is
a good example of expert blind spot discussed in Chapter 3. . .)

7.5 What Are We Teaching Them Now?

Very little is known about what coding bootcamps and other free-range ini-
tiatives teach, in part because many are reluctant to share their curriculum.
We do know more about what is taught in schools: [Luxt2017] surveyed
the topics included in introductory programming courses, categorized their
findings under a dozen headings, and ranked them by frequency:

Topic Number of Courses (%)
Programming Process 90 (87%)
Abstract Programming Thinking 65 (63%)
Data Structures 41 (40%)
Object-Oriented Concepts 37 (36%)
Control Structures 34 (33%)
Operations & Functions 27 (26%)
Data Types 24 (23%)
Input/Output 18 (17%)
Libraries 15 (15%)
Variables & Assignment 14 (14%)
Recursion 10 (10%)
Pointers & Memory Management 5 (5%)

This paper also showed how concepts are connected. For example,
it’s impossible to explain how operator precedence works without first
explaining a few operators, and difficult to explain those in a meaningful
way without first introducing variables (because otherwise you’re comparing
constants in expressions like 5<3, which is confusing).

Similarly, [Rich2017] reviewed a hundred articles to find learning tra-
jectories for computing classes in elementary and middle schools, and
presented results for sequencing, repetition, and conditionals. These are
essentially collective concept maps, as they combine and rationalize the
implicit and explicit thinking of many different educators. Figure 7.2 shows
the learning trajectories for conditionals.

72

A Boolean is a
variable that

can be true or
false

Conditions can
overlap and more

than one can apply

Logical operators
can be used to

combine
conditions

Conditional
statements can
be combined in

several ways

Computers
require all

actions to be
specified

Sometimes multiple
conditions must be

considered

A condition is
something that can

be true or false
Actions often results
from specific causes

A conditional
connects a

condition to an
outcome

Each of the two states
of a condition may
have its own action

Conditional
statements can

create branches in
the flow of execution

Conditional statements
evaluate conditions and

complete connected
actions

beginner

intermediate

advanced

Figure 7.2: Learning Trajectory for Conditions (from [Rich2017])

But there can be a world of difference between what instructors teach
and what learners learn, and study after study has shown that teaching eval-
uations don’t correlate with actual learning outcomes [Star2014, Uttl2017].
To find out how much novices are actually learning, we therefore have to use
other measures or do direct studies. Taking the former approach, roughly
two-thirds of post-secondary students pass their first computing course, with
some variations depending on class size and so on, but with no significant
differences over time or based on language [Benn2007a, Wats2014].

How does prior experience affect these results? To find out, [Wilc2018]
compared the performance and confidence of novices with and without
prior programming experience in CS1 and CS2. They found that novices

73

with prior experience outscored novices without by 10% in CS1, but those
differences disappeared by the end of CS2. They also found that women
with prior exposure outperformed their male peers in all areas, but were
consistently less confident in their abilities; we will return to this issue in
Section 10.4.

As for direct studies of how much novices learn, [McCr2001] presented
a multi-site international study, which was later replicated by [Utti2013].
According to the first study, “. . . the disappointing results suggest that many
students do not know how to program at the conclusion of their introductory
courses.” More specifically, “For a combined sample of 216 students from
four universities, the average score was 22.89 out of 110 points on the
general evaluation criteria developed for this study.” This result may say
as much about teachers’ expectations as it does about student ability, but
either way, our fourth recommendation is to measure and track results in
ways that can be compared over time, so that you can tell if your lessons
are becoming more or less effective.

7.6 Do Languages Matter?

The short answer is “yes”: novices learn to program faster and also learn
more using blocks-based tools like Scratch (Figure 7.3) that make syntax
errors impossible [Wein2017b]. And block interfaces encourage exploration
in a way that text does not; like all good tools, Scratch can be learned
accidentally [Malo2010].

Our fifth recommendation is therefore to start children and teens with
blocks-based interfaces before moving to text-based systems. The age qual-
ification is there because Scratch (deliberately) looks like it’s meant for
younger users; while imitators like Blockly5 look more grown-up, it can still
be hard to convince adults to take them seriously.

Scratch has probably been studied more than any other programming
tool, and we know a great deal about how it is used. As just one example,
[Aiva2016] analyzed over 250,000 Scratch projects and found (among other
things) that about 28% of projects have some blocks that are never called
or triggered. The authors hypothesize that users may be using them as a
scratchpad to keep bits of code they don’t (yet) want to throw away.

[Grov2017, Mlad2017] studied novices learning about loops in Scratch,
Logo, and Python, and found that misconceptions about loops are minimized
when using a block-based language rather than a text-based language.
What’s more, as tasks become more complex (such as using nested loops)
the differences become larger.

[Wein2017a] studied people using a tool that allowed them to switch
between blocks and text for programming. They found that learners tend to

5https://developers.google.com/blockly/

74

https://developers.google.com/blockly/

Figure 7.3: Scratch (from https://opensource.com/article/18/4/designing-
game-scratch-open-jam)

migrate from blocks to text over time, but when learners shifted from text
to blocks, their next action was to add a new type of command. This may
be because browsing available commands is easier with blocks, or because
blocks make syntax errors with unfamiliar new commands impossible. The
authors say, “While it is often claimed that blocks-based programming
environments offer the advantage of reducing syntax errors, our findings
suggest that blocks also offer information about what is possible in the space
and provide a low-stakes means of exploring unfamiliar code.” New tools
like Stride6 are trying to smooth the transition between blocks and text even
further; when combined with programming notebooks like Jupyter7 and
Stencila8, they may eventually eliminate the distinction altogether.

Harder Than Necessary

[Stef2013] has shown that the creators of programming language
make those languages harder to learn by not doing basic usability
testing. For example, “. . . the three most common words for looping
in computer science, for, while, and foreach, were rated as the three
most unintuitive choices by non-programmers.” More fundamentally,
their work shows that C-style syntax (as used in Java and Perl) is just

6https://www.greenfoot.org/frames/
7http://jupyter.org/
8http://stenci.la/

75

https://opensource.com/article/18/4/designing-game-scratch-open-jam
https://opensource.com/article/18/4/designing-game-scratch-open-jam
https://www.greenfoot.org/frames/
http://jupyter.org/
http://stenci.la/

as hard for novices to learn as a randomly-designed syntax, but that
the syntax of languages such as Python and Ruby is significantly easier
to learn, and the syntax of their own language, Quorum, is easier
still, because they are testing each new feature before adding it to the
language. ([Stef2017] is a useful brief summary of what we actually
know about designing programming languages and why we believe it’s
true.)

Object-Oriented and Functional Programming

Objects and classes are power tools for experienced programmers, and many
educators advocate an “objects first” approach to teaching programming
(though they sometimes disagree on exactly what that means [Benn2007b]).
[Sorv2014] describes and motivates this approach, and [Koll2015] describes
three generations of tools designed to support novice programming in object-
oriented environments.

Introducing objects early has a few special challenges. [Mill2016b]
found that most novices using Python struggled to understand self (which
refers to “this object”): they omitted it in method definitions, failed to use it
when referencing object attributes, or both. Object reference errors were
also more common than other errors; the authors speculate that this is
partly due to the difference in syntax between obj.method(param) and
def method(self, param). [Rago2017] found something similar in high
school students, and that high school teachers often weren’t clear on the
concept either.

Another approach is exemplified by the Bootstrap project9, which is
based on the functional programming paradigm. This work draws on a
rich tradition going back to languages like Scheme and Lisp, and to classic
textbooks like [Fell2001, Frie1995, Abel1996]. If functional programming
continues to gain ground among professional programmers, this approach
may grow more popular for teaching.

On balance, we recommend that instructors use procedural languages to
start with, i.e., that defining classes and using higher-order functions not
be taught until learners understand basic control structures and data types.
How quickly these topics should be introduced depends on the audience: if
learners want to build web applications in JavaScript, for example, they’re
going to have to master callbacks much earlier than if they want to generate
reports using C#.

9http://www.bootstrapworld.org/

76

http://www.bootstrapworld.org/

Type Declarations

Programmers have argued for decades about whether variables’ data
types should have to be declared or not. One recent empirical finding is
[Gao2017], which found that about 15% of bugs in JavaScript programs
could be caught by requiring type declarations, which is either high or low
depending on what answer you wanted in the first place.

However, programming and learning to program are different activities,
and results from the former don’t necessarily apply to the latter. [Endr2014]
found that requiring novices to declare variable types does add some com-
plexity to programs, but it pays off fairly quickly by acting as documentation
for a method’s use—in particular, by forestalling questions about what’s
available and how to use it.

We don’t know enough yet to recommend typed or untyped languages
for novices. Now that Python allows optional typing, though, it may be
feasible for researchers to explore whether it can or should be introduced
gradually.

Does Variable Naming Style Matter?

[Kern1999] says, “Programmers are often encouraged to use long variable
names regardless of context. This is a mistake: clarity is often achieved
through brevity.” Lots of programmers believe this, but [Hofm2017] found
that using full words in variable names led to an average of 19% faster
comprehension compared to letters and abbreviations.

In contrast, [Beni2017] found that using single-letter variable names
didn’t affect novices’ ability to modify code. This may be because their pro-
grams are shorter than professionals’, or because some single-letter variable
names have implicit types and meanings: most programmers assume i, j,
and n are integers, and s is a string, while x, y, and z are either floating-point
numbers or integers more or less equally.

How important is this? [Bink2012] reported a series of studies that found
that reading and understanding code is fundamentally different from reading
prose: “. . . the more formal structure and syntax of source code allows
programmers to assimilate and comprehend parts of the code quite rapidly
independent of style. In particular. . . beacons and program plans play a
large role in comprehension.” It also found that experienced developers are
relatively unaffected by identifier style, so our recommendation is just to
use consistent style in all examples.

Since most languages have style guides (e.g., PEP 810 for Python) and
tools to check that code follows these guidelines, our full recommendation
is is to use tools to ensure that all code examples adhere to a consistent style.

10https://www.python.org/dev/peps/pep-0008/

77

https://www.python.org/dev/peps/pep-0008/

7.7 Does Better Feedback Help?

Incomprehensible error messages are a major source of frustration for
novices (and sometimes for experienced programmers as well). Several
researchers have therefore explored whether better error messages would
help alleviate this. For example, [Beck2016] rewrote some of the Java
compiler’s messages so that instead of:

C:\stj\Hello.java:2: error: cannot find symbol
public static void main(string[] args){

^
1 error
Process terminated ... there were problems.

learners would see:

Looks like a problem on line number 2.
If "string" refers to a datatype, capitalize the 's'!

Sure enough, novices given these messages made fewer repeated errors and
fewer errors overall.

[Bari2017] went further and used eye tracking to show that despite
the grumblings of compiler writers, people really do read error messages—
in fact, they spend 13–25% of their time doing this. However, reading
error messages turns out to be as difficult as reading source code, and how
difficult it is to read the error messages strongly predicts task performance.
Instructors should therefore give learners practice in reading and interpreting
error messages. [Marc2011] has a rubric for responses to error messages
that can be useful in grading such exercises.

Does Visualization Help?

The idea of visualizing programs is perennially popular, and tools like
[Guo2013] (a web-based tool for visualizing the execution of Python pro-
grams) and Loupe11 (which shows how JavaScript’s event loop works) are
both useful teaching aids. However, people learn more from constructing
visualizations than they do from viewing visualizations constructed by others
[Stas1998, Ceti2016], so does visualization actually help learning?

To answer this, [Cunn2017] replicated an earlier study of the kinds of
sketching students do when tracing code execution. They found that not
sketching at all correlates with lower success, while tracing changes to

11http://latentflip.com/loupe/

78

http://latentflip.com/loupe/

variables’ values by writing new values near their names as they change was
the most effective strategy (Figure 7.1).

One possible confounding effect they checked was time: since sketchers
take significantly more time to solve problems, do they do better just because
they think for longer? The answer is no: there was no correlation between
the time taken and the score achieved. Our recommendation is therefore to
teach students to trace variables’ values when debugging.

Flowcharts

One often-overlooked finding about visualization is that students un-
derstand flowcharts better than pseudocode if both are equally well
structured [Scan1989]. Earlier work showing that pseudocode outper-
formed flowcharts used structured pseudocode and tangled flowcharts;
when the playing field was levelled, novices did better with the graphi-
cal representation.

7.8 What Else Can We Do to Help?

[Viha2014] examined the average improvement in pass rates of various
kinds of intervention in programming classes. As they themselves point
out, there are many reasons to take their findings with a grain of salt: the
pre-change teaching practices are rarely stated clearly, the quality of change
is not judged, and only 8.3% of studies reported negative findings, so either
there is positive reporting bias or the way we’re teaching right now is almost
the worst way possible and anything would be an improvement. And like
many other studies discussed in this chapter, they were only looking at
university classes, so their findings may not generalize to other groups.

With all those caveats in mind, they found ten things instructors can do
to improve outcomes (Figure 7.4):

Collaboration: Activities that encourage student collaboration either in
classrooms or labs.

Content Change: Parts of the teaching material were changed or updated.
Contextualization: Course content and activities were aligned towards a

specific context such as games or media.
CS0: Creation of a preliminary course to be taken before the introductory

programming course; could be organized only for some (e.g., at-risk)
students.

Game Theme: A game-themed component was introduced to the course.
Grading Scheme: A change in the grading scheme; the most common

change was to increase the amount of points rewarded from programming
activities, while reducing the weight of the course exam.

Group Work: Activities with increased group work commitment such as
team-based learning and cooperative learning.

79

Media Computation: Activities explicitly declaring the use of media com-
putation (Chapter 10).

Peer Support: Support by peers in form of pairs, groups, hired peer men-
tors or tutors.

Other Support: An umbrella term for all support activities, e.g. increased
teacher hours, additional support channels, etc.

Figure 7.4: Effectiveness of Interventions

This list highlights the importance of cooperative learning. [Beck2013]
looked at this specifically over three academic years in courses taught by
two different instructors, and found significant benefits overall and for many
subgroups: they not only had higher grades, they left fewer questions blank
on the final exam, which indicates greater self-efficacy and willingness to
try to debug things.

As noted earlier, writing code isn’t the only way to teach people how to
program. [Shel2017] reports that having novices work on computational
creativity exercises improves grades at several levels. A typical exercise is to
identify an everyday object (such as nail clipper, a paper clip, Scotch tape)
and describe the object in terms of its inputs, outputs and functions. This
kind of teaching is sometimes called “unplugged”; the CS Unplugged12 site
has a collection of lessons and exercises for doing this.

12https://csunplugged.org/en/

80

https://csunplugged.org/en/

7.9 Exercises

Checking for Common Errors (individual/20 minutes)

This list of common errors is taken from [Sirk2012]. Pick three, and write
an exercise for each to check that learners aren’t making that mistake.

Inverted assignment: The student assigns the value of the left-hand vari-
able to the right-hand side variable, rather than the other way around.

Wrong branch: Even though the conditional evaluates to False, the stu-
dent jumps to the then clause.

Wrong False: As soon as the conditional evaluates to False , the student
returns False from the function.

Executing function instead of defining it: The student believes that a
function is executed as it is defined.

Unevaluated parameters: The student believes the function starts running
before the parameters have been evaluated.

Parameter evaluated in the wrong frame: The student creates parameter
variables in the caller’s frame, not in the callee’s.

Failing to store return value: The student does not assign the return value
in the caller.

Assignment copies object: The student creates a new object rather than
copying a reference.

Method call without subject: The student tries to call a method from a
class without first creating an instance of the class.

Mangled Code (pairs/15 minutes)

[Chen2017] describes exercises in which students reconstruct code that
has been mangled by removing comments, deleting or replacing lines of
code, moving lines, inserting extra unneeded lines, and so on. Student
performance on these correlates strongly with performance on assessments
in which students write code (i.e., whatever traditional assignments are
measuring, these are measuring as well), but these questions require less
(in-person) work to mark. Take the solution to a programming exercise
you’ve created in the past, mangle it in two different ways, and swap with a
partner.

The Rainfall Problem (pairs/10 minutes)

[Solo1986] introduced the Rainfall Problem: write a program that repeat-
edly reads in positive integers until it reads the integer 99999. After seeing
99999, the program should print out the average of the numbers seen.
This problem has been used in many subsequent studies of programming
[Fisl2014, Simo2013, Sepp2015].

Solve the Rainfall Problem in the programming language of your choice.
Compare your solutions with those of your partner.

81

Roles of Variables (pairs/15 minutes)

Take a short program you have written (5–15 lines) and classify each of
its variables using the categories defined in Section 7.1. Compare your
classifications with those of a partner: where did you agree? When you
disagreed, did you understand each other’s view?

Choose Your Own Adventures (individual/10 minutes)

Which of the three approaches described in [Sorv2014] (Section 7.5) do
you use when teaching? Or is your approach best described in some other
way?

What Are You Teaching? (individual/10 minutes)

Compare the topics you teach to the list developed in [Luxt2017] (Sec-
tion 7.5). Which topics do you cover? What extra topics do you cover that
aren’t in their list?

Beneficial Activities (individual/10 minutes)

Look at the list of interventions developed by [Viha2014] (Section 7.8).
Which of these things do you already do in your classes? Which ones could
you easily add? Which ones are irrelevant?

Visualizations (individual/10 minutes)

What visualization do you most like to use when teaching? Is it a static
image or an animation? Do you show it to your learners, do they discover it
on their own, or something in between?

Misconceptions and Challenges (small groups/15 minutes)

The Professional Development for CS Principles Teaching13 site includes a
detailed list of student misconceptions and exercises14. Working in small
groups, choose one section (such as data structures or functions) and go
through their list. Which of these misconceptions do you remember having
when you were a learner? Which do you still have? Which have you seen in
your learners?

13http://www.pd4cs.org/
14http://www.pd4cs.org/mc-index/

82

http://www.pd4cs.org/
http://www.pd4cs.org/mc-index/

Part III

Teaching

83

8 Teaching as a Performance Art

After reading this chapter, you will be able to. . .

• Define jugyokenkyu and lateral knowledge transfer and explain their
relationship to each other.

• Describe and enact at least three techniques for giving and receiving
feedback on teaching performance.

• Explain at least two ways in which using a rubric makes feedback
more effective.

• Describe live coding and explain its advantages as a teaching prac-
tice for programming workshops.

• Do and critique live coding.

As Chapter 7 explained, every teacher needs content knowledge, general
pedagogical knowledge, and pedagogical content knowledge in order to be
effective. We can elaborate this framework by adding technology to the mix
[Koeh2013], but that doesn’t change the key point: it isn’t enough to know
the subject, or how to teach—you have to know how to teach that particular
subject [Maye2004].

This chapter therefore focuses on one key aspect of teaching: giving a
lecture or a live demonstration in front of a class. It isn’t the only way to
teach, but it is probably the most common, and the techniques that will
make you better at doing it can be applied elsewhere as well.

Teaching Tips

The CS Teaching Tipsa site is collecting PCK for teaching programming,
and I hope that one day we will have catalogs like [Ojos2015], teacher
training materials like [Hazz2014, Guzd2015a, Sent2018], or more
personal collections like [Gelm2002] to help us all do it better.
ahttp://csteachingtips.org/

85

http://csteachingtips.org/

8.1 Lesson Study

From politicians to researchers and teachers themselves, educational reform-
ers have designed systems to find and promote people who can teach well
and eliminate those who cannot. But the assumption that some people are
born teachers is wrong; instead, like any other performance art, the keys
to better teaching are practice and collaboration. As [Gree2014] explains,
the Japanese approach to this is called jugyokenkyu, which means “lesson
study”:

Jugyokenkyu is a bucket of practices that Japanese teachers use to hone
their craft, from observing each other at work to discussing the lesson
afterward to studying curriculum materials with colleagues. The practice
is so pervasive in Japanese schools that it is. . . effectively invisible.

In order to graduate, [Japanese] education majors not only had to
watch their assigned master teacher work, they had to effectively replace
him, installing themselves in his classroom first as observers and then, by
the third week, as a wobbly. . . approximation of the teacher himself. It
worked like a kind of teaching relay. Each trainee took a subject, planning
five days’ worth of lessons. . . [and then] each took a day. To pass the
baton, you had to teach a day’s lesson in every single subject: the one you
planned and the four you did not. . . and you had to do it right under
your master teacher’s nose. Afterward, everyone—the teacher, the college
students, and sometimes even another outside observer—would sit around
a formal table to talk about what they saw.

Putting work under a microscope in order to improve it is commonplace
in sports and music. A professional musician, for example, will dissect half
a dozen different recordings of “Body and Soul” or “Smells Like Teen Spirit”
before performing it. She would also expect to get feedback from fellow
musicians during practice and after performances. Many other professions
work this way as well: for example, the Japanese drew inspiration from
Deming’s ideas on continuous improvement in manufacturing1.

But continuous feedback isn’t part of teaching culture in most English-
speaking countries. There, what happens in the classroom stays in the
classroom: teachers don’t watch each other’s lessons on a regular basis, so
they can’t borrow each other’s good ideas. The result is that every teacher has
to invent teaching on their own. They may get lesson plans and assignments
from colleagues, the school board or a textbook publisher, or go through a
few MOOCs on the Internet, but each teacher has to figure out for herself
how to combine that content with the theory she learned in education school
to deliver an actual lesson in an actual classroom for actual students.

Writing up new techniques and giving demonstration lessons, in which
one person teaches actual students while other teachers observe, seem like
1https://en.wikipedia.org/wiki/W._Edwards_Deming

86

https://en.wikipedia.org/wiki/W._Edwards_Deming

a way to solve this. However, [Finc2007, Finc2012] found that they are
usually ineffective: of the 99 change stories analyzed, teachers only searched
actively for new practices or materials in three cases, and only consulted
published material in eight cases. Most changes occurred locally, without
input from outside sources, or involved only personal interaction with other
educators.
[Bark2015] found something similar:

Adoption is not a “rational action,” however, but an iterative series of
decisions made in a social context, relying on normative traditions, social
cueing, and emotional or intuitive processes. . . Faculty are not likely to
use educational research findings as the basis for adoption decisions. . .
Positive student feedback is taken as strong evidence by faculty that they
should continue a practice.

This phenomenon is sometimes called lateral knowledge transfer:
someone sets out to teach X, but while watching them, their audience
actually learns Y as well (or instead). For example, a teacher might intend
to show learners how to search for email addresses in a text file, but what
her audience might take away is some new keyboard shortcuts in the editor.
What jugyokenkyu does is maximize the opportunity for this to happen
between teachers.

8.2 Giving and Getting Feedback on Teaching

Observing someone helps you; giving them feedback helps them. But as the
cartoon in Figure 8.1 suggests, it can be hard to receive feedback, especially
when it’s negative.

Feedback is easier to give and receive when both parties share ground
rules and expectations. This is especially important when they have differ-
ent backgrounds or cultural expectations about what’s appropriate to say
and what isn’t. You can get better feedback on your work by using these
techniques:

Initiate feedback. It’s better to ask for feedback than to receive it unwill-
ingly.

Choose your own questions, i.e., ask for specific feedback. It’s a lot harder
for someone to answer, “What do you think?” than to answer either,
“What is one thing I could have done as a teacher to make this lesson
more effective?” or “If you could pick one thing from the lesson to go
over again, what would it be?”

Directing feedback like this is also more helpful to you. It’s always
better to try to fix one thing at once than to change everything and hope
it’s for the better. Directing feedback at something you have chosen to
work on helps you stay focused, which in turn increases the odds that
you’ll see progress.

87

Figure 8.1: Feedback Feelings (copyright © Deathbulge 2013)

Use a feedback translator. Have someone else read over all the feedback
and give you a summary. It can be easier to hear “It sounds like most
people are following, so you could speed up” than to read several notes
all saying, “this is too slow” or “this is boring”.

Be kind to yourself. Many of us are very critical of ourselves, so it’s always
helpful to jot down what we thought of ourselves before getting feedback
from others. That allows us to compare what we think of our performance
with what others think, which in turn allows us to scale the former more
accurately. For example, it’s very common for people to think that they’re
saying “um” and “err” all the time, when their audience doesn’t notice it.
Getting that feedback once allows teachers to adjust their assessment of
themselves the next time they feel that way.

You can give feedback to others more effectively as well:

Balance positive and negative feedback. A common method is a “compli-
ment sandwich” made up of one positive, one negative, and a second
positive observation (though this can get tiresome after a while).

Organize your feedback using a rubric. Most people are more comfort-
able giving and receiving feedback when they feel that they understand
the social rules governing what they are allowed to say and how they are
allowed to say it. A facilitator can then transcribe items into a shared
document (or onto a whiteboard) during discussion.

The simplest rubric for feedback on teaching is a 2×2 grid whose vertical
axis is labelled “what went well” and “what can be improved”, and whose
horizontal axis is labelled “content” (what was said) and “presentation”
(how it was said). Observers write their comments on sticky notes as they

88

watch the demonstration, then post those in the quadrants of a grid drawn
on a whiteboard (Figure 8.2)

went well

can be improved

content
presentation

logical order

real-world example

spoke too quickly

hand gestures

clear voice

good eye contact

didn't motivate example

Figure 8.2: Teaching Rubric

A more sophisticated rubric developed for assessing 5–10 minute videos
of programming instruction is given in Appendix J. A rubric this detailed is
best presented as a checklist with items more or less in the order that they’ll
be used (e.g., questions about the introduction come before questions about
the conclusion).

Question Budgets

Rubrics like the one in Appendix J have a tendency to grow over time
as people think of things they’d like to add. A good way to keep them
manageable is to insist that the total length stay constant, i.e., that if
someone wants to add a question, they have to identify one that’s less
important and can be removed.

If you are interested in giving and getting feedback, [Gorm2014] has
good advice that you can use to make peer-to-peer feedback a routine part
of your teaching, while [Gawa2011] looks at the value of having a coach.
However feedback is collected, remember that it is meant to be formative:
its goal is to help people figure out what they are doing well and what they
still need to work on. Please also remember that these guidelines are for
peer-to-peer feedback on your lesson delivery; gathering feedback from your

89

learners should be as close to continuous as you can make it, and you should
prompt for questions and reflections as well as positives and negatives.

Studio Classes

Architecture schools often include studio classes, in which students
solve small design problems and get feedback from their peers right
then and there. These classes are most effective when the teacher
critiques both the designs and the peer critiques, so that participants
learn not only how to make buildings, but how to give and get feedback
[Scho1984]. Master classes in music serve a similar purpose.

8.3 How to Practice Performance

The best way to improve your in-person lesson delivery is to watch yourself
do it. This method is borrowed from Warren Code at the University of British
Columbia.

1. Work in groups of three.
2. Each person rotates through the roles of teacher, audience, and videog-

rapher. The teacher has two minutes to explain one key idea from
their teaching or other work as if they were talking to a class of high
school students. The person pretending to be the audience is there to be
attentive, while the videographer records the session using a cellphone
or other handheld device.

3. After everyone has finished teaching, the whole group watches the
videos together. Everyone gives feedback on all three videos, i.e.,
people give feedback on themselves as well as on others.

4. After the videos have been discussed, they are deleted. (Many people
are increasingly uncomfortable with the prospect of images of them-
selves appearing online.)

5. Finally, return to the main group and add the feedback to a shared 2×2
grid that separates positive from negative and content from presenta-
tion.

In order for this exercise to work well:

• Record all three videos and then watch all three. If the cycle is teach-
review-teach-review, the last person to teach runs out of time. Doing
all the reviewing after all the teaching also helps put a bit of distance
between the teaching and the reviewing, which makes the exercise
slightly less excruciating.

• Let people know at the start of the class that they will be asked to teach
something so that they have time to choose a topic. (Telling them this
in advance can be counter-productive, since some people will fret over
how much they should prepare.)

90

• Groups must be physically separated to reduce audio cross-talk between
their recordings. In practice, this means 2–3 groups in a normal-sized
classroom, with the rest using nearby breakout spaces, coffee lounges,
offices, or (on one occasion) a janitor’s storage closet.

• People must give feedback on themselves, as well as giving feedback
on each other, so that they can calibrate their impressions of their own
teaching according to the impressions of other people. (Most people are
harder on themselves than others are, and it’s important for them to
realize this.)

The announcement of this exercise is often greeted with groans and ap-
prehension, since few people enjoy seeing or hearing themselves. However,
those same people consistently rate it as one of the most valuable parts of
workshops based on these notes. It’s also good preparation for co-teaching
(Section 9.3): teachers find it a lot easier to give each other informal feed-
back if they have had some practice doing so and have a shared rubric to
set expectations.

Tells

Everyone has nervous habits. For example, many of us talk more rapidly
and in a higher-pitched voice than usual, while others play with their
hair or crack their knuckles. Gamblers call nervous habits like this
“tells”. While these are often not as noticeable as you would think, it’s
good to know whether you pace, fiddle with your hair, look at your
shoes, or rattle the change in your pocket when you don’t know the
answer to a question.

You can’t get rid of tells completely, and trying to do so can make
you obsess about them. A better strategy is to try to displace them,
e.g., to train yourself to scrunch your toes inside your shoes instead of
cracking your knuckles.

8.4 Live Coding

Teaching is theater, not cinema.
— Neal Davis

One technique that completely changed the way I teach programming is
live coding. Instead of using slides, teachers actually write code in front of
their class as their learners follow along. It’s more effective than slides for
many reasons:

• Watching a program being written is more compelling than watching
someone page through slides that present bits and pieces of the same
code.

91

• It enables teachers to be more responsive to “what if?” questions. Where
a slide deck is like a railway track, live coding allows teachers to go off
road and follow their learners’ interests.

• It facilitates lateral knowledge transfer: people learn more than we
realized we were teaching by watching how teachers do things.

• It slows the teacher down: if she has to type in the program as she goes
along, she can only go twice as fast as her learners, rather than ten-fold
faster as she could with slides.

• It helps to keep the load on short-term memory down because it makes
the teacher more aware of how much they are throwing at their learners.
(This isn’t true of slides or of copy-and-paste.)

• Learners get to see teachers’ mistakes and how to diagnose and correct
them. Novices are going to spend most of their time doing this, but it’s
left out of most textbooks.

• Watching teachers make mistakes shows learners that it’s all right to
make mistakes of their own. Most people model the behavior of their
teachers: if the teacher isn’t embarrassed about making and talking
about mistakes, learners will be more comfortable doing so too.

Teachers need a bit of practice to get comfortable with thinking aloud as
they code in front of an audience, but most report that it is then no more
difficult than talking around a deck of slides, and research seems to back
up its effectiveness [Rubi2013, Haar2017]. The sections below offer tips on
how to make your live coding better.

Embrace Your Mistakes

The typos are the pedagogy.
— Emily Jane McTavish

The most important rule of live coding is to embrace your mistakes. No
matter how well you prepare, you will make some; when you do, think
through them with your audience. While data is hard to come by, pro-
fessional programmers spend anywhere from 25% to 60% of their time
debugging; novices spend much more (Section 7.2), but most textbooks
and tutorials spend little time diagnosing and correct problems. If you talk
aloud while you figure out what you mistyped or where you took the wrong
path, and explain how you’ve corrected yourself, you will give your learners
a toolbox they can use when they make their own mistakes.

This is at odds with advice like that in [Kran2015], which says, “. . . you
should have your material absolutely mastered before you enter the class-
room. If. . . you have a proof or example that is not quite right. . . and stand
in front of the group trying to fix it, then you will lose all but the diehards
quickly.” In contrast, the feedback we’ve had in Software Carpentry2 work-

2http://software-carpentry.org

92

http://software-carpentry.org

shops and other settings is that watching the teacher make mistakes actually
motivates most students, since it gives them permission to be less than
perfect as well.

Deliberate Fumbles

If you’ve given a lesson several times, you’re unlikely to make anything
other than basic typing mistakes (which can still be informative). You
can try to remember past mistakes and make them deliberately, but
that often feels forced (unless the mistake and how to correct it is the
primary purpose of the lesson). A better approach is sometimes called
twitch coding: ask learners one by one to tell you what to type next.
This is pretty much guaranteed to get you into the weeds.

Ask For Predictions

One way to keep students engaged while you are live coding is to ask them
to make predictions, e.g., to say, “What is going to happen when I run
this code?” You can then either show them, or write down the first few
suggestions they make, have the whole class vote on which they think is
most likely, and then run the code. As well as keeping their attention on
task, this gives them practice at reasoning about code’s behavior, which is a
useful skill in its own right.

Take It Slow

For every command you type, every word of code you write, every menu
item or website button you click, say out loud what you are doing while
you do it, then point to the command and its output on the screen and go
through it a second time. This not only slows you down, it allows learners
who are following along to copy what you do, or to catch up, even when
they are looking at their screen while doing it. Whatever you do, don’t copy
and paste code: doing this practically guarantees that you’ll race ahead of
your learners. And if you use tab completion, say it out loud the first few
times so that your learners understand what you’re doing: “Let’s use turtle
dot ’r’ ’i’ and tab to get ’right’.”

If the output of your command or code makes what you just typed
disappear from view, scroll back up so learners can see it again. If that’s not
practical, execute the same command a second time, or copy and paste the
last command(s) into the workshop’s shared notes.

Be Seen and Heard

If you are physically able to stand up for a couple of hours, do it while you
are teaching. When you sit down, you are hiding yourself behind others for

93

those sitting in the back rows. Make sure to notify the workshop organizers
of your wish to stand up and ask them to arrange a high table, standing
desk, or lectern.

Regardless of whether you are standing or sitting, make sure to move
around as much as reasonable. You can for example go to the screen to point
something out, or draw something on the white/blackboard (see below).
Moving around makes the teaching more lively, less monotonous. It draws
the learners’ attention away from their screens, to you, which helps get the
point you are making across.

Even though you may have a good voice and know how to use it well, it
may be a good idea to use a microphone, especially if the workshop room
is equipped with one. Your voice will be less tired, and you increase the
chance of people with hearing difficulties being able to follow the workshop.

Mirror Your Learner’s Environment

You may have customized your environment with a fancy Unix shell prompt,
a custom color scheme for your development environment, or a plethora of
keyboard shortcuts. Your learners won’t have any of this, so try to create
an environment that mirrors what they do have. Some teachers create a
separate bare-bones user (login) account on their laptop, or a separate
teaching-only account if they’re using an online service like Scratch or
GitHub.

Use the Screen Wisely

You will need to enlarge your font considerably in order for people to read
it from the back of the room, which means you can put much less on the
screen than you’re used to. You will often be reduced to 60–70 columns
and 20–30 rows, which basically means that you’re using a 21st Century
supercomputer to emulate an early-1980s VT100 terminal.

To cope with this, maximize your window, and then ask everyone to give
you a thumbs-up or thumbs-down on its readability. Use a black font on a
lightly-tinted background rather than a light font on a dark background—the
light tint will glare less than a pure white background.

Pay attention to the room lighting as well: it should not be fully dark,
and there should be no lights directly on or above the presenter’s screen. If
needed, reposition the tables so all learners can see the screen.

When the bottom of the projector screen is at the same height, or below,
the heads of the learners, people in the back won’t be able to see the lower
parts. Raise the bottom of your window(s) to compensate, but be aware
that this gives you even less space for your typing.

If you can get a second projector and screen, use it: the extra real estate
will allow you to display your code on one side and its output or behavior

94

on the other. The second screen may require its own PC or laptop, so you
may need to ask a helper to control it.

If you teach using a console window, such as a Unix shell, it’s important
to tell people when you run an in-console text editor and when you return
to the console prompt. Most novices have never seen a window take on
multiple personalities in this way, and can quickly become confused (partic-
ularly if the window is hosting an interactive interpreter prompt for Python
or some other language as well as running shell commands and hosting an
editor).

Accessibility Aids Help Everyone

Tools like Mouseposéa (for Mac) and PointerFocusb (for Windows) will
highlight the position of your mouse cursor on the screen, and screen
recording software tools like Camtasiac will echo invisible keys like tab
and Control-J as you type them. These take a bit of practice to get
used to, but are extremely helpful as you start teaching more advanced
tools.
ahttps://boinx.com/mousepose/overview/
bhttp://www.pointerfocus.com/
chttps://www.techsmith.com/video-editor.html

Double Devices

Some people now use two devices when teaching: a laptop plugged into
the projector for learners to see, and a tablet beside it so that they can view
their own notes and the shared notes that the learners are taking together
(Section 9.7). This is more reliable than displaying one virtual desktop
while flipping back and forth to another. Of course, printouts of the lesson
material are still the most reliable backup technology. . .

Use Diagrams

Diagrams are almost always a good idea. Creating them in advance to bring
up on screen is a common practice—I often have a slide deck full of diagrams
in the background when I’m doing live coding—but don’t underestimate
the value of sketching on the whiteboard as you go through your lesson.
This allows you to build diagrams step by step, which helps with retention
(Section 4.1) and allows you to improvise.

Avoid Distractions

Turn off any notifications you may use on your laptop, such as those from
social media, email, etc. Seeing notifications flash by on the screen distracts

95

https://boinx.com/mousepose/overview/
http://www.pointerfocus.com/
https://www.techsmith.com/video-editor.html

you as well as the learners, and it can be awkward when a message pops up
you’d rather not have others see. If you are teaching frequently, you might
want to create a second account on your computer that doesn’t have email
or other tools set up at all.

Improvise After You Know the Material

The first time you teach a new lesson, stick fairly closely to the lesson plan
you’ve drawn up or borrowed. It may be tempting to deviate from the
material because you would like to show a neat trick or demonstrate some
alternative way of doing something. Resist: there is a fair chance you’ll run
into something unexpected that you then have to explain.

Once you are more familiar with the material, though, you can and
should start improvising based on the backgrounds of your learners, their
questions in class, and what you find most interesting about the lesson. This
is like playing a new song: the first few times, you stick to the sheet music,
but after you’re comfortable with it, you can start to put your own stamp on
it.

If you really want to use something outside of the material, run through
it beforehand as you plan to in class using the same computer that you’ll be
teaching on. Installing several hundred megabytes of software updates over
high school WiFi in front of increasingly bored 16-year-olds isn’t something
you want to do twice.

Direct Instruction

Direct Instruction is a teaching method centered around meticulous
curriculum design delivered through a prescribed script—i.e., it’s more
like an actor reciting lines than it is like the improvisatory approach
we recommend. [Stoc2018] surveys studies and finds statistically
significant positive effect, even though DI sometimes gets knocked for
being mechanical. We still prefer improvisation because DI requires a
far greater up-front investment than most free-range learning groups
can afford.

Face the Screen—Occasionally

It’s OK to face the screen occasionally, particularly when you are walking
through a section of code statement by statement or drawing a diagram, but
you shouldn’t do this for more than a few seconds at a time. Looking at the
screen for a few seconds can help lower your anxiety levels, since it gives
you a brief break from being looked at.

A good rule of thumb is to treat the screen as one of your learners: if it
would be uncomfortable to stare at someone for as long as you are spending
looking at the screen, it’s time to turn around and face your audience.

96

Drawbacks

Live coding does have some drawbacks, but with practice, these can be
avoided or worked around. A common one is going too slowly, either
because you are not a good typist or because you are spending too much
time looking at notes trying to figure out what to type next. The fix for the
first is a bit of typing practice; the fix for the second is to break the lesson
into very short pieces, so that you only ever have to remember one small
step to take next.

A deeper exercise is that typing in library import statements, class head-
ers, and other boilerplate code increases the extraneous cognitive load on
your learners (Chapter 4). If you spend a lot of time doing this, it may be
all that learners take away, so give yourself and your learners skeleton code
to start with (Section 9.9).

8.5 Exercises

Give Feedback on Bad Teaching (whole class/20 minutes)

1. Watch this video of bad teaching3 as a group and give feedback on it.
Organize feedback along two axes: positive vs. negative and content vs.
presentation.

2. Have each person in the class add one point to a 2×2 grid on a white-
board (or in the shared notes) without duplicating any points that are
already up there.

What did other people see that you missed? What did they think that
you strongly agree or disagree with?

Practice Giving Feedback (small groups/45 minutes)

Use the process described above to practice teaching in groups of three.
When your group is done, the teacher will add one point of feedback from
each participant to a 2×2 grid on the whiteboard or in the shared notes,
without accepting duplicates. Participants should not say whether the point
they offer was made by them, about them, or neither: the goal at this stage
is primarily for people to become comfortable with giving and receiving
feedback, and to establish a consensus about what sorts of things to look for.

3https://www.youtube.com/watch?v=-ApVt04rB4U

97

https://www.youtube.com/watch?v=-ApVt04rB4U

The Bad and the Good (whole class/20 minutes)

Watch the videos of live coding done poorly4 and live coding done well5 and
summarize your feedback on both using the usual 2×2 grid. These videos
assume learners know what a shell variable is, know how to use the head
command, and are familiar with the contents of the data files being filtered.

See Then Do (pairs/30 minutes)

Teach 3–4 minutes of a lesson using live coding to a fellow trainee, then
swap and watch while that person live codes for you. Don’t bother trying to
record the live coding sessions—we have found that it’s difficult to capture
both the person and the screen with a handheld device—but give feedback
the same way you have previously (positive and negative, content and
presentation). Explain in advance to your fellow trainee what you will be
teaching and what the learners you teach it to are expected to be familiar
with.

• What felt different about live coding (versus standing up and lecturing)?
What was harder/easier?

• Did you make any mistakes? If so, how did you handle them?
• Did you talk and type at the same time, or alternate?
• How often did you point at the screen? How often did you highlight

with the mouse?
• What will you try to do differently next time?

Tells (small groups/15 minutes)

1. Read the description of tells at the end of Section 8.2, then make a
note of what you think your tells are, but do not share them with other
people.

2. Teach a short (3–5 minute) lesson.
3. Ask your audience how they think you betray nervousness. Is their list

the same as yours?

Teaching Tips (small groups/15 minutes)

The CS Teaching Tips6 site has a large number of practical tips on teaching
computing, as well as a collection of downloadable tip sheets. In small
groups, go through the tip sheets on their home page and classify each tip as
“use all the time”, “use occasionally”, “never use”. Where do your practice
and your peers’ practice differ? Are there any tips you strongly disagree
with, or think would be ineffective?

4https://youtu.be/bXxBeNkKmJE
5https://youtu.be/SkPmwe_WjeY
6http://csteachingtips.org/

98

https://youtu.be/bXxBeNkKmJE
https://youtu.be/SkPmwe_WjeY
http://csteachingtips.org/

9 In the Classroom

After reading this chapter, you will be able to. . .

• Describe how to handle a Code of Conduct violation.
• Explain the benefits and drawbacks of co-teaching.
• Explain why teachers should not introduce new pedagogical prac-

tices in a short workshop.
• Name, describe, and enact four teaching practices that are appro-

priate to use in programming workshops for adults, and give a
pedagogical justification for each.

The previous chapter described how to practice in-class teaching and
described one method—live coding—that allows teachers to adapt to their
learners’ pace and interests. This chapter describes other practices that have
proven helpful in programming classes.

Before describing these practices, it’s worth pausing for a moment to
set expectations. The best teaching method we know is individual tutoring:
[Bloo1984] found that students taught one-to-one using mastery learning
techniques performed two standard deviations better than those who learned
through conventional lecture, i.e., that individually-tutored students did
better than 98% of students who were lectured to. However, hiring one
teacher for every student is impossibly expensive (and despite the hype,
artificial intelligence isn’t going to take the place of human instructors any
time soon). Every method is essentially an attempt to get as much of the
value of individual attention as possible, but at scale.

9.1 Enforce the Code of Conduct

Chapter 1 said that every workshop should have and enforce a Code of
Conduct like the one in Appendix D. If you are a teacher, and believe that
someone has violated it, you may warn them, ask them to apologize, and/or
expel them, depending on the severity of the violation and whether or not
you believe it was intentional. Whatever you do:

99

Do it in front of witnesses. Most people will tone down their language
and hostility in front of an audience, and having someone else present
ensures that later discussion doesn’t degenerate into conflicting claims
about who said what.

If you expel someone, say so to the rest of the class and explain why.
This helps prevent exaggerated rumors from taking hold, and also signals
very clearly to everyone that you’re serious about making your class safe
and respectful for them.

Contact the host of your class as soon as you can and describe what hap-
pened.

A Code of Conduct is meaningless without procedures for reporting
violations and enforcing its rules. However much you don’t enjoy doing the
latter, remember that the former can be a much greater burden for people
who have been targets.

9.2 Peer Instruction

No matter how good a teacher is, she can only say one thing at a time. How
then can she clear up many different misconceptions in a reasonable time?
The best solution developed so far is a technique called peer instruction.
Originally created by Eric Mazur at Harvard [Mazu1996], it has been studied
extensively in a wide variety of contexts, including programming [Crou2001,
Port2013], and [Port2016] found that students value peer instruction even
at first contact.

Peer instruction is essentially a way to provide one-to-one mentorship in
a scalable way. It interleaves formative assessment with student discussion
as follows:

1. Give a brief introduction to the topic.
2. Give students a multiple choice question that probes for misconceptions

(rather than simple factual knowledge).
3. Have all the students vote on their answers to the MCQ.

• If the students all have the right answer, move on.
• If they all have the same wrong answer, address that specific mis-

conception.
• If they have a mix of right and wrong answers, give them several

minutes to discuss those answers with one another in small groups
(typically 2–4 students) and then reconvene and vote again.

As this video from Avanti’s learning center in Kanpur1 shows, group
discussion significantly improves students’ understanding because it forces

1https://www.youtube.com/watch?v=2LbuoxAy56o

100

https://www.youtube.com/watch?v=2LbuoxAy56o

them to clarify their thinking, which can be enough to call out gaps in rea-
soning. Re-polling the class then lets the teacher know if they can move on,
or if further explanation is necessary. A final round of additional explanation
and discussion after the correct answer is presented gives students one more
chance to solidify their understanding.

But could this be a false positive? Are results improving because of in-
creased understanding during discussion, or simply from a follow-the-leader
effect (“vote like Jane, she’s always right”)? [Smit2009] tested this by fol-
lowing the first question with a second one that students answer individually.
Sure enough, peer discussion actually does enhance understanding, even
when none of the students in a discussion group originally knew the correct
answer.

Taking a Stand

It is important to have learners vote publicly so that they can’t change
their minds afterward and rationalize it by making excuses to them-
selves like “I just misread the question”. Much of the value of peer
instruction comes from the hypercorrection of having their answer be
wrong and having to think through the reasons why (Section 5.1).

9.3 Teach Together

Co-teaching describes any situation in which two teachers work together in
the same classroom. [Frie2016] describes several ways to do this:

Team teaching: Both teachers deliver a single stream of content in tandem,
taking turns the way that musicians taking solos would.

Teach and assist: Teacher A teaches while Teacher B moves around the
classroom to help struggling students.

Alternative teaching: Teacher A provides a small set of students with more
intensive or specialized instruction while Teacher B delivers a general
lesson to the main group.

Teach and observe: Teacher A teaches while Teacher B observes the stu-
dents, collecting data on their understanding to help plan future lessons.

Parallel teaching: The class is divided into two equal groups and the teach-
ers present the same material simultaneously to each.

Station teaching: The students are divided into several small groups that
rotate from one station or activity to the next while both teachers supervise
where needed.

All of these models create more opportunities for lateral knowledge
transfer than teaching alone. Team teaching is particularly beneficial in
day-long workshops: not only does it give each teacher’s voice a chance to
rest, it reduces the risk that they will be so tired by the end of the day that
they will start snapping at their students or fumbling at their keyboard.

101

Helping

Many people who aren’t comfortable teaching are still willing and able
to provide in-class technical support. They can help learners with setup
and installation, answer technical questions during exercises, monitor
the room to spot people who may need help, or keep an eye on the
shared notes (Section 9.7) and either answer questions there or remind
the instructor to do so during breaks.

Helpers are sometimes people training to become teachers (i.e.,
they’re Teacher B in the teach and assist model), but they can also
be members of the host institution’s technical support staff, alumni,
or advanced learners who already know the material well. Using the
latter as helpers is doubly effective: not only are they more likely to
understand the problems their peers are having, it also stops them from
getting bored.

If you and a partner are co-teaching, try to follow these rules:

• Take 2–3 minutes before the start of each class to confirm who’s teach-
ing what with your partner. (If you have time to do some advance
preparation, try drawing a concept map together.)

• Use that time to work out a couple of hand signals as well. “You’re going
too fast”, “speak up”, “that learner needs help”, and, “It’s time for a
bathroom break” are all useful.

• Each person should teach for at least 10–15 minutes at a stretch, since
students may be distracted by more frequent interleaving.

• The person who isn’t teaching shouldn’t interrupt, offer corrections,
elaborations, or amusing personal anecdotes, or do anything else to
distract from what the person teaching at the time is doing or saying.
The one exception is that it’s sometimes helpful to ask leading questions,
particularly if the learners seem unsure of themselves.

• Each person should take a couple of minutes before they start teaching
to see what their partner is going to teach after they’re done, and then
not present any of that material.

• The person who isn’t teaching should stay engaged with the class, not
catch up on their email. Monitor the shared notes (Section 9.7), keep an
eye on the students to see who’s struggling, jot down some feedback to
give your teaching partner at the next break—anything that contributes
to the lesson is better than anything that doesn’t.

Most importantly, take a few minutes when the class is over to either
congratulate or commiserate with each other. In teaching as in life, shared
misery is lessened and shared joy increased: no one will understand how
pleased you are that you helped someone understand loops better than the
person you just taught with.

102

9.4 Assess Prior Knowledge

The more you know about your learners before you start teaching, the more
you will be able to help them. If you’re working inside a formal school
system, you can probably infer their incoming knowledge by looking at
what’s (actually) covered in the prerequisites to your course. If you’re in a
free-range setting, though, your learners may be much more diverse, so you
may want to give them a short survey or questionnaire in advance of your
class to find out what they do and don’t already know.

But doing this is risky. School trains people to treat all assessment as
summative, i.e., to believe that anything that looks like an exam is something
they have to pass, rather than a chance to shape instruction. If they answer
“I don’t know” to even a handful of questions on your preassessment, they
might conclude that your class is too advanced for them. In short, you might
scare off many of the people you most want to help.

And self-assessment is unreliable because of the Dunning-Kruger effect2

[Krug1999]: the less people know about a subject, the less accurate their
estimate of their knowledge is. Conversely, people who are competent
may underrate their skills because they regard their level of competence as
normal.

Rather than asking people to rate their knowledge from 1 to 5, you
should therefore try to ask them how easily they could complete some
specific tasks, but that still runs the risk of scaring them away. Appendix L
presents a short preassessment questionnaire that most potential learners
are unlikely to find intimidating; if you use it or anything like it, please be
sure to follow up with people who don’t respond to find out why not.

9.5 Plan for Mixed Abilities

If your learners have widely varying levels of prior knowledge, then you can
easily wind up in a situation where a third of your class is lost and a third is
bored. That’s unsatisfying for everyone, but there are some strategies you
can use to manage the situation:

• Before running a workshop, communicate its level clearly to everyone
who’s thinking of signing up by listing the topics that will be covered and
showing a few examples of exercises that they will be asked to complete.

• Provide extra self-paced exercises so that more advanced learners don’t
finish early and get bored.

• Ask more advanced learners to help people next to them. They’ll learn
from answering their peers’ questions (since it will force them to think
about things in new ways).

2https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

103

https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

• Keep an eye out for learners who are falling behind and intervene early
so that they don’t become frustrated and give up.

The most important thing is to accept that no single lesson can possibly
meet everyone’s individual needs. If you slow down to accommodate two
people who are struggling, the other 38 are not being well served. Equally,
if you spend a few minutes talking about an advanced topic to a learner
who is bored, the rest of the class will feel left out.

False Beginners

A false beginner is someone who has studied a language before but
is learning it again. False beginners may be indistinguishable from
absolute beginners on preassessment tests, but are able to move much
more quickly through the material once they start—in mathematical
terms, their intercept is the same, but their slope is very different. False
beginners are common in free-range programming classes: for example,
a child may have taken a Scratch class a couple of years ago and built
a mental model of loops and conditionals, but do poorly on a pre-test
because the material isn’t fresh in their mind. All of the strategies
described above can be used in classes with false beginners.

Being a false beginner is an example of preparatory privilege
[Marg2010]. In many cases, it’s a result of coming from a home that’s
secure enough and affluent enough to have several computers and
parents who are familiar with how to use them. Whether or not this is
fair depends on what you choose to include in your assessment.

9.6 Pair Programming

Pair programming is a software development practice in which two pro-
grammers share one computer. One person (the driver) does the typing,
while the other (the navigator) offers comments and suggestions. The two
switch roles several times per hour; this video3 is a quick explanation and
demonstration.

Pair programming is an effective practice in professional work
[Hann2009], and is also a good way to teach: benefits include in-
creased success rate in introductory courses, better software, and higher
student confidence in their solutions; there is also evidence that stu-
dents from underrepresented groups benefit even more than others
[McDo2006, Hank2011, Port2013, Cele2018]. Partners can not only help
each other out during the practical, but can also clarify each other’s
misconceptions when the solution is presented, and discuss common
research interests during breaks. I have found it particularly helpful with

3https://www.youtube.com/watch?v=vgkahOzFH2Q

104

https://www.youtube.com/watch?v=vgkahOzFH2Q

mixed-ability classes, since pairs are likely to be more homogeneous than
individuals.

When you use pairing, put everyone in pairs, not just learners who are
struggling, so that no one feels singled out. It’s also useful to have people
sit in new places (and hence pair with different partners) on a regular basis,
and to have people switch roles within each pair three or four times per
hour, so that the stronger personality in each pair doesn’t dominate the
session.

To facilitate pairing, use a flat (dinner-style) seating rather than banked
(theater-style) seating; this also makes it easier for helpers to reach learners
who need assistance. And take a few minutes to demonstrate what it actually
looks like so that they understand the person who doesn’t have their hands
on the keyboard isn’t supposed to just sit and watch. Finally, tell them about
[Lewi2015], who studied pair programming in a Grade 6 classroom, and
found that pairs that focused on trying to complete the task as quickly as
possible were less fair in their sharing.

Switching Partners

Teachers have mixed opinions on whether people should be required to
change partners at regular intervals. On the one hand, it gives everyone
a chance to gain new insights and make new friends. On the other,
moving computers and power adapters to new desks several times
a day is disruptive, and pairing can be uncomfortable for introverts.
That said, [Hann2010] found weak correlation between the “Big Five”
personality traits and performance in pair programming, although an
earlier study [Wall2009] found that pairs whose members had differing
levels of personality traits communicated more often.

9.7 Take Notes. . . Together?

Many studies have shown that taking notes while learning improves reten-
tion [Aike1975, Boha2011]. Taking notes is essentially a form of real-time
elaboration (Section 5.1): it forces you to organize and reflect on material
as it’s coming in, which in turn increases the likelihood that you will transfer
it to long-term memory in a usable way.

Our experience, and some recent research findings, lead us to believe
that taking notes collaboratively can is also effective, [Ornd2015, Yang2015],
even though taking notes on a computer is generally less effective than
taking notes using pen and paper [Muel2014].

The first time students encounter the practice, they sometimes report
that they find it distracting, as it’s one more thing they have to keep an eye
on. Some of the arguments in favor of doing it are:

105

• It allows people to compare what they think they’re hearing with what
other people are hearing, which helps them fill in gaps and correct
misconceptions right away.

• It gives the more advanced learners in the class something useful to do.
Rather than getting bored and checking Twitter during class, they can
take the lead in recording what’s being said, which keeps them engaged,
and allows less advanced learners to focus more of their attention on
new material. Keeping the more advanced learners busy also helps the
whole class stay engaged because boredom is infectious: if a handful of
people start updating their Facebook profiles, the people around them
will start checking out too.

• The notes the learners take are usually more helpful to them than those
the teacher would prepare in advance, since the learners are more likely
to write down what they actually found new, rather than what the
teacher predicted would be new.

• Glancing at the notes as they’re being taken helps the teacher discover
that the class didn’t hear something important, or misunderstood it.

We usually use Etherpad4 or Google Docs5 for taking shared notes. The
former makes it easy to see who’s written what, while the latter scales better
and allows people to add images to the notes. Whichever is chosen, classes
also use it to share snippets of code and small datasets, and as a way for
learners to show teachers their work (by copying and pasting it in).

If you are going to have a group take notes together, make a list of
everyone’s name and paste it into the document each time you want every
person to answer a question or contribute an exercise solution. This prevents
the situation in which everyone is trying to edit the same couple of lines at
the same time.

In my experience, the benefits of shared note-taking outweigh the costs.
If you are only working with a particular group once, though, please heed
the advice in Section 9.12 and stick to whatever they are used to.

9.8 Sticky Notes

Sticky notes are one of my favorite teaching tools, and judging from
[Ward2015], I’m not alone in loving their versatility, portability, stickability,
foldability, and subtle yet alluring aroma.

9.8.1 As Status Flags

Give each learner two sticky notes of different colors, e.g., orange and
green. These can be held up for voting, but their real use is as status flags. If

4http://etherpad.org
5https://docs.google.com

106

http://etherpad.org
https://docs.google.com

someone has completed an exercise and wants it checked, they put the green
sticky note on their laptop; if they run into a problem and need help, they
put up the orange one. This is better than having people raise their hands
because it’s more discreet (which means they’re more likely to actually do
it), they can keep working while their flag is raised, and the teacher can
quickly see from the front of the room what state the class is in.

9.8.2 To Distribute Attention

Sticky notes can also be used to ensure the teacher’s attention is fairly
distributed. Have each learner write their name on a sticky note and put it
on their laptop. Each time the teacher calls on them or answers one of their
questions, their sticky note comes down. Once all the sticky notes are down,
everyone puts theirs up again.

This technique makes it easy for the teacher to see who they haven’t
spoken with recently, which in turn helps them avoid the unconscious trap
of only interacting with the most extroverted of their learners. It also shows
learners that attention is being distributed fairly, so that when they are
called on, they won’t feel like they’re being picked on.

9.8.3 As Minute Cards

You can use sticky notes as minute cards. Before each break, learners take
a minute to write one positive thing on the green sticky note (e.g., one thing
they’ve learned that they think will be useful), and one thing they found too
fast, too slow, confusing, or irrelevant on the red one. They can use the red
sticky note for questions that hasn’t yet been answered or something that
they’re still confused about. While they are enjoying their coffee or lunch,
the teachers review and cluster these to find patterns. It only takes a few
minutes to see what learners are enjoying, what they still find confusing,
what problems they’re having, and what questions are still unanswered.

9.9 Never a Blank Page

Programming workshops (and other kinds of classes) can be built around a
set of independent exercises, develop a single extended example in stages, or
use a mixed strategy. The main advantages of independent exercises are that
people who fall behind can easily re-synchronize, and that lesson developers
can add, remove, and rearrange material at will. A single extended example,
on the other hand, will show learners how the bits and pieces they’re
learning fit together: in educational parlance, it provides more opportunity
for them to integrate their knowledge.

Whichever approach you take, novices should never start doing exercises
with a blank page (or screen), since they often find this intimidating or

107

bewildering. If they have been following along as you do live coding, you
can ask them either to add a few more lines or to modify the example you
have built up. Alternatively, if there is a shared note-taking space, you can
paste in a few lines of starter code for them to extend or modify.

Modifying existing code instead of writing new code from scratch doesn’t
just give learners structure: it is also closer to what they will do in real
life. Keep in mind, however, that starter code may increase cognitive load,
since learners can be distracted by trying to understand it all before they
start their own work. Java’s public static void main() or a handful of
import statements at the top of a Python program may make sense to you,
but is extraneous load to them (Chapter 4).

9.10 Setting Up Your Learners

Adult learners tell us that it is important to them to leave programming
classes with their own computers set up to do real work. We therefore
strongly recommend that teachers be prepared to teach on all three major
platforms (Linux, Mac OS, and Windows), even though it would be simpler
to require learners to use just one.

To do this, put detailed setup instructions for all three platforms on your
class website, and email learners a couple of days before the workshop starts
to remind them to do the setup. Even with this, a few people will always
show up without the right software, either because their other commitments
didn’t allow them to go through the setup or because they ran into problems.
To detect this, have everyone run some simple command as soon as they
arrive and show the teachers the result, and then have helpers and other
learners assist people who have run into trouble.

Common Denominators

If you have participants using several different operating systems, avoid
using features which are OS-specific, and point out any that you do use.
For example, some shell commands take different options on Mac OS
than on Linux, while the “minimize window” controls and behavior on
Windows are different from those on other platforms.

You can try using tools like Docker6 to put virtual machines on learners’
computers to reduce installation problems, but those introduce problems of
their own. Older or smaller machines simply aren’t fast enough to run them,
learners often struggle to switch back and forth between two different sets of
keyboard shortcuts for things like copying and pasting, and even competent
practitioners will become confused about what exactly is happening where.

6http://docker.com

108

http://docker.com

All of this is so complicated that many teachers now use browser-based
tools instead. This solves the installation issues, but makes the class depen-
dent on institutional WiFi (which can be of highly variable quality). It also
doesn’t satisfy adult learners’ desire to leave with their own machines ready
for real-world use, but as cloud-native development tools like Glitch7 enter
widespread use, that is less and less important.

9.11 Other Teaching Practices

None of the smaller practices described below are essential, but all will
improve lesson delivery. As with chess and marriage, success in teaching is
often a matter of slow, steady progress.

Start With Introductions

To begin your class, the teachers should give a brief introduction that will
convey their capacity to teach the material, accessibility and approachability,
desire for student success, and enthusiasm. Tailor your introduction to the
students’ skill level so that you convey competence (without seeming too
advanced) and demonstrate that you can relate to the students. Throughout
the workshop, continually demonstrate that you are interested in student
progress and that you are enthusiastic about the topics.

Students should also introduce themselves (preferably verbally). At the
very least, everyone should add their name to the shared notes, but it’s also
good for everyone at a given site to know who all is in the group. (This can
be done while setting up before the start of the class.)

Set Up Your Own Environment

Setting up your environment is just as important as setting up your learners’,
but more involved. As well as having all the software that they need, and
network access to the tool they’re using to take notes, you should also have
a glass of water, or a cup of tea or coffee. This helps keep your throat
lubricated, but its real purpose is to give you an excuse to pause for a couple
of seconds and think when someone asks a hard question or you lose track
of what you were going to say next. You will probably also want some
whiteboard pens and a few of the other things described in the travel kit
checklist in Appendix I.

7https://glitch.com/

109

https://glitch.com/

Avoid Homework in All-Day Formats

Learners who have spent an entire day programming will be tired. If you
give them homework to do after hours, they’ll start the next day tired as
well, so don’t do this.

Don’t Touch the Learner’s Keyboard

It’s often tempting to fix things for learners, but when you do, it can easily
seem like magic (even if you narrate every step). Instead, talk your learners
through whatever they need to do. It will take longer, but it’s more likely to
stick.

Repeat the Question

Whenever someone asks a question in class, repeat it back to them before
answering it to check that you’ve understood it, and to give people who
might not have heard it a chance to do so. This is particularly important
when presentations are being recorded or broadcast, since your microphone
will usually not pick up what other people are saying. Repeating questions
back also gives you a chance to redirect the question to something you’re
more comfortable answering if need be. . .

One Up, One Down

We frequently ask for summary feedback at the end of each day. The
teachers ask the learners to alternately give one positive and one negative
point about the day, without repeating anything that has already been said.
This requirement forces people to say things they otherwise might not: once
all the “safe” feedback has been given, participants will start saying what
they really think.

Minute cards are anonymous; the alternating up-and-down feedback is
not. Each mode has its strengths and weaknesses, and by providing both,
we hope to get the best of both worlds.

Have Learners Make Predictions

Research has shown that people learn more from demonstrations if they are
asked to predict what’s going to happen [Mill2013]. Doing this fits naturally
into live coding: after adding or changing a few lines of a program, ask
someone what is going to happen when it’s run.

110

Setting Up Tables

You may not have any control over the layout of the desks or tables in
the room in which your programming workshop takes place, but if you
do, we find it’s best to have flat (dinner-style) seating rather than banked
(theater-style) seating, so that you can reach learners who need help more
easily, and so that learners can pair with one another (Section 9.5). In-floor
power outlets so that you don’t have to run power cords across the floor
make life easier as well as safer, but are still the exception.

Whatever layout you have, try to make sure the seats have good back
support, since people are going to be in them for an extended period, and
check that every seat has an unobstructed view of the screen.

Cough Drops

If you talk all day to a room full of people, your throat gets raw because you
are irritating the epithelial cells in your larynx and pharynx. This doesn’t just
make you hoarse—it also makes you more vulnerable to infection (which is
part of the reason people often come down with colds after teaching).

The best way to protect yourself against this is to keep your throat lined,
and the best way to do that is to use cough drops early and often. Good
ones will also mask the onset of coffee breath, for which your learners will
probably be grateful.

Think-Pair-Share

Think-pair-share is a lightweight technique that helps people refine their
ideas and compare them with others’. Each person starts by thinking individ-
ually about a question or problem and jotting down a few notes. Participants
are then paired to explain their ideas to each another, and possibly to merge
them or select the more interesting ones. Finally, a few pairs present their
ideas to the whole group.

Think-pair-share works because, to paraphrase Oscar Wilde’s Lady Win-
dermere, people often can’t know what they’re thinking until they’ve heard
themselves say it. Pairing gives people new insight into their own thinking,
and forces them to think through and resolve any gaps or contradictions
before exposing their ideas to a larger group.

Morning, Noon, and Night

[Smar2018] found that if students’ classes and other work is scheduled at
times that don’t line up with their natural body clocks, they do less well—i.e.,
that if a morning person takes night classes or vice versa, their grades suffer.
It’s usually not possible to accommodate this in small groups, but larger ones

111

should try to stagger start times. This can also help people with childcare
responsibilities and other constraints on their time.

Humor

Humor should be used sparingly when teaching: most jokes are less funny
when written down, and become even less funny with each re-reading.
Being spontaneously funny while teaching usually works better, but can
easily go wrong: what’s a joke to your circle of friends may turn out to be a
serious political issue to your audience. If you do make jokes when teaching,
don’t make them at the expense of any group, or of anyone except possibly
yourself.

9.12 Limit Innovation

Each of the techniques presented in this chapter will make your classes
better, but you shouldn’t try to adopt them all at once. In fact, it may be
best for your students if you don’t use any of them, particularly in situations
where you and the students are only together for brief periods. The reason
is that every new practice increases the student’s cognitive load: as well as
absorbing what you’re trying to teach them about programming, they’re also
having to learn a new way to learn. If you are working with them repeatedly,
you can introduce one new technique every few lessons; if you only have
them for a one-day workshop, it’s probably best to be conservative in your
approach.

9.13 Exercises

Create a Questionnaire (individual/20 minutes)

Using the questionnaire in Appendix L as a template, create a short ques-
tionnaire you could give learners before teaching a class of your own. What
do you most want to know about their background?

One of Your Own (whole class/15 minutes)

Think of one teaching practice that hasn’t been described so far. Present
your idea to a partner, listen to theirs, and select one to present to the group
as a whole. (This exercise is an example of think-pair-share.)

May I Drive? (pairs/10 minutes)

Swap computers with a partner (preferably one who uses a different oper-
ating system than you) and work through a simple programming exercise.

112

How frustrating is it? How much insight does it give you into what novices
have to go through all the time?

Pairing (pairs/15 minutes)

Watch this video8 of pair programming, then practice doing it with a partner.
Remember to switch roles between driver and navigator every few minutes.
How long does it take you to fall into a working rhythm?

Compare Notes (small groups/15 minutes)

From groups of 3–4 people and compare the notes that each person has
taken while reading this material or following along with it in class. What
did you think was noteworthy that your peers missed and vice versa? What
did you understand differently?

Credibility (individual/15 minutes)

[Fink2013] describes three things that make teachers credible in their learn-
ers’ eyes:

Competence: knowledge of the subject as shown by the ability to explain
complex ideas or reference the work of others.

Trustworthiness: having the student’s best interests in mind. This can be
shown by giving individualized feedback, offering a rational explanation
for grading decisions, and treating all students the same.

Dynamism: excitement about the subject (Chapter 8).

Describe one thing you do when teaching that fits into each category,
and then describe one thing you don’t do but should for each category as
well.

Measuring Effectiveness (individual/15 minutes)

[Kirk1994] defines four levels at which to evaluate training:

Reaction: how did the learners feel about the training?
Learning: how much did they actually learn?
Behavior: how much have they changed their behavior as a result?
Results: how have those changes in behavior affected their output or the

output of their group?

What are you doing at each level to evaluate what and how you teach?
What could you do that you’re not doing?

8https://www.youtube.com/watch?v=vgkahOzFH2Q

113

https://www.youtube.com/watch?v=vgkahOzFH2Q

Objections and Counter-Objections (think-pair-share/15
minutes)

You have decided not to ask your learners if your class was useful, because
you know that there is no correlation between their answers and how
much they actually learn (Section 7.5). Instead, you have put forward four
proposals, each of which your colleagues have shot down:

See if they recommend the class to friends. Why would this be any more
meaningful than asking them how they feel about the class?

Give them an exam at the end. But how much learners know at the end
of the day is a poor predictor of how much they will remember two or
three months later, and any kind of final exam will change the feel of the
class, because school has conditioned learners to believe that exams are
always high-stakes affairs.

Give them an exam two or three months later. But that’s practically im-
possible with free-range learners, and the people who didn’t get anything
out of the workshop are probably less likely to take part in follow-up, so
feedback gathered this way will be skewed.

See if they keep using what they learned. Again, since installing spy-
ware on learners’ computers is frowned upon, how will this be
implemented?

Working on your own, come up with answers to these objections, then
swap responses with a partner and discuss the approaches you have come
up with. When you are done, share your best counter-argument with the
entire class.

114

10 Motivation and Demotivation

After reading this chapter, you will be able to. . .

• Explain the difference between intrinsic and extrinsic motivation.
• Name and describe three ways teachers can demotivate learners.
• Define impostor syndrome and describe ways to combat it.
• Explain what stereotype threat and fixed vs. growth mindset are,

summarize the strength of evidence supporting each, and describe
their implications for teaching.

• Describe and enact three things teachers can do to make their
classes more accessible.

• Describe and enact three things teacher can do to make their classes
more inclusive.

Learners need encouragement to step out into unfamiliar terrain, so this
chapter discusses ways teachers can motivate them. More importantly, it
talks about ways teachers can accidentally demotivate them, and how to
avoid doing that.

Our starting point is the difference between extrinsic motivation, which
we feel when we do something to avoid punishment or earn a reward, and
intrinsic motivation, which is what we feel when we find something per-
sonally rewarding. Both affect most situations—for example, people teach
because they enjoy it and because they get paid—but we learn best when
we are intrinsically motivated [Wlod2017]. According to self-determination
theory1, the three drivers of intrinsic motivation are:

Competence: the feeling that you know what you’re doing.
Autonomy: the feeling of being in control of your own destiny.
Relatedness: the feeling of being connected to others.

A well-designed lesson encourages all three. For example, a programming
exercise would give students practice with all the tools they need to use
to solve a larger problem (competence), let them tackle the parts of that

1https://en.wikipedia.org/wiki/Self-determination_theory

115

https://en.wikipedia.org/wiki/Self-determination_theory

problem in whatever order they want (autonomy), and allow them to talk
to their peers (relatedness).

The Problem of Grades

I’ve never had an audience in my life. My audience is a rubric.
– quoted by Matt Tierneya

Grades and the way they distort learning are often used as an exam-
ple in discussion of extrinsic motivation, but as [Mill2016a] observes,
they aren’t going to go away any time soon, so it’s pointless to try to
build a system that ignores them. Instead, [Lang2013] explores how
courses that emphasize grades can incentivize students to cheat, and
offers some tips on how to diminish this effect, while [Covi2017] looks
at the larger problem of balancing intrinsic and extrinsic motivation
in institutional education, and the constructive alignmentb approach
advocated in [Bigg2011] seeks to bring learning activities and learning
outcomes into line with each other.
ahttps://twitter.com/figuralities/status/987330064571387906
bhttps://en.wikipedia.org/wiki/Constructive_alignment

[Ambr2010] contains a list of evidence-based methods to motivate learn-
ers. None of them are surprising—it’s hard to imagine someone saying that
we shouldn’t identify and reward what we value—but it’s useful to check
lessons against these points to make sure they’re doing at least a few of these
things. One strategy I particularly like is to have students who struggled but
succeeded come in and tell their stories to the rest of the class. Learners are
far more likely to believe stories from people like themselves [Mill2016a],
and people who have been through your course will always have advice that
you would never have thought of.

Not Just for Students

Discussions of motivation in education often overlook the need to
motivate the teacher. Learners respond to a teacher’s enthusiasm,
and teachers need to care about a topic in order to keep teaching it,
particularly when they are volunteers. This is another powerful reason
to co-teach (Section 9.3): just as having a running partner makes it
more likely that you’ll keep running, having a teaching partner helps get
you up and going on those days when you have a cold and the projector
bulb has burned out and nobody knows where to find a replacement
and why are they doing construction work today of all days. . .

Teachers can do other positive things as well. [Bark2014] found three
things that drove retention for all students: meaningful assignments, faculty
interaction with students, and student collaboration on assignments. Pace

116

https://twitter.com/figuralities/status/987330064571387906
https://en.wikipedia.org/wiki/Constructive_alignment

and workload (relative to expectations) were also significant drivers, but
primarily for male students. Things that didn’t drive retention were interac-
tions with teaching assistants and interactions with peers in extracurricular
activities. These results may seem obvious, but the reverse would seem
obvious too: if the study had found that extracurricular activities drove re-
tention, we would also say “of course”. Noticeably, two of the four retention
drivers (faculty interaction and student collaboration) take extra effort to
replicate online (Chapter 11).

10.1 Authentic Tasks

As Dylan Wiliam points out in [Hend2017], motivation doesn’t always lead
to achievement, but achievement almost always leads to motivation: helping
students succeed motivates them far more than telling them how wonderful
they are. We can use this idea in teaching by creating a grid whose axes are
“mean time to master” and “usefulness once mastered” (Figure 10.1).

teach
this
first

us
ef

ul
ne

ss
 o

nc
e

m
as

te
re

d

mean time to master

arg
ue

 ab
ou

t th
is

don't
bother

Figure 10.1: What to Teach

Things that are quick to master and immediately useful should be taught
first, even if they aren’t considered fundamental by people who are already
competent practitioners, because a few early wins will build learners’ confi-
dence in their own ability and their teacher’s judgment. Conversely, things
that are hard to learn and have little near-term application should be skipped
entirely, while topics along the diagonal need to be weighed against each
other.

Many of the foundational concepts of computer science, such as recursion
and computability, inhabit the “useful but hard to learn” corner of this grid.
This doesn’t mean that they aren’t worth learning, but if our aim is to
convince people that they can learn to program, and that doing so will help

117

them do things that they care about, these big ideas can and should be
deferred. Remember, people often don’t want to program for its own sake:
they want to make music or explore changes to family incomes over time,
and (rightly) regard programming as a tax they have to pay in order to do
so.

A well-studied instance of prioritizing what’s useful without sacrific-
ing what’s fundamental is the media computation approach developed at
Georgia Tech [Guzd2013]. Instead of printing “hello world” or summing
the first ten integers, a student’s first program might open an image, re-
size it to create a thumbnail, and save the result. This is an authentic
task, i.e., something that learners believe they would actually do in real
life. It also has a tangible artifact: if the image comes out the wrong size,
learners have a concrete starting point for debugging. [Lee2013] describes
an adaption of this approach from Python to MATLAB, while others are
building similar courses around data science, image processing, and biology
[Dahl2018, Meys2018, Ritz2018].

There will always be tension between giving learners authentic problems
and exercising the individual skills that they will need to solve those prob-
lems. People don’t answer multiple choice questions or do Parsons Problems
outside of a classroom, any more than most musicians play scales over and
over again in front of an audience. Finding the balance is hard, but one easy
first step is to make sure that exercises don’t include anything arbitrary or
meaningless. For example, programming examples shouldn’t use variables
called foo and bar, and if you’re going to have learners sort lines of text,
give them album titles or people’s names or something relatable.

10.2 Demotivation

Women aren’t leaving computing because they don’t know what it’s like;
they’re leaving because they do know.
— variously attributed

If you are teaching in a free-range setting, your learners are probably vol-
unteers, and probably want to be in your classroom. The exercise therefore
isn’t how to motivate them, but how to not demotivate them. Unfortunately,
you can do this by accident much more easily than you might think. For
example, [Cher2009] reported four studies showing that subtle environ-
mental clues have a measurable difference on the interest that people of
different genders have in computing: changing objects in a CS classroom
from those considered stereotypical of computer science (e.g., Star Trek
posters and video games) to objects not considered stereotypical (e.g., na-
ture poster, phone books) boosted female undergraduates’ interest in CS to
the level of their male peers. Similarly, [Gauc2011] reports a trio of studies
showing that gendered wording commonly employed in job recruitment

118

materials can maintain gender inequality in traditionally male-dominated
occupations.

The three most powerful demotivators for adult learners are unpre-
dictability, indifference, and unfairness. Unpredictability demotivates people
because if there’s no reliable connection between what they do and what
outcome they achieve, there’s no reason for them to try to do anything.
Indifference demotivates because learners who believe that the teacher or
educational system doesn’t care about them or the material won’t care about
it either. And people are also demotivated if they believe something is unfair,
even if it is unfair in their favor, because they will worry (consciously or
unconsciously) that they will some day find themselves in the group on
the losing end [Wilk2011]. In extreme situations, learners may develop
learned helplessness: when repeatedly subjected to negative feedback in
a situation that they can’t change, they may learn not to even try to change
the things they could.

Here are a few specific things that will demotivate your learners:

A holier-than-thou or contemptuous attitude from a teacher or a fellow
learner.

Telling them that their existing skills are rubbish. Unix users sneer
at Windows, programmers of all kinds make jokes about Excel, and
no matter what web application framework you already know, some
programmer will tell you that it’s out of date. Learners have often
invested a lot of time and effort into acquiring the skills they have;
disparaging them is a good way to guarantee that they won’t listen to
anything else you have to say.

Diving into complex or detailed technical discussion with the most ad-
vanced learners in the class.

Pretending that you know more than you do. Learners will trust you
more if you are frank about the limitations of your knowledge, and will
be more likely to ask questions and seek help.

Using the J word (“just”) or feigning surprise (i.e., saying things like “I
can’t believe you don’t know X” or “you’ve never heard of Y?”). As
discussed in Chapter 3, this signals to the learner that the teacher thinks
their problem is trivial and by extension that they must be stupid for not
being able to figure it out.

Software installation headaches. People’s first contact with new program-
ming tools, or programming in general, is often demoralizing, and be-
lieving that something is hard to learn is a self-fulfilling prophecy. It isn’t
just the time it takes to get set up, or the feeling that it’s unfair to have
to debug something that depends on precisely the knowledge they don’t
yet have; the real problem is that every such failure reinforces their belief
that they’d have a better chance of making next Thursday’s deadline if
they kept doing things the way they always have.

119

It is even easier to demotivate people online than in person, but there
are now evidence-based strategies for dealing with this. [Ford2016] found
that five barriers to contribution on Stack Overflow2 are seen as significantly
more problematic by women than men: lack of awareness of site features,
feeling unqualified to answer questions, intimidating community size, dis-
comfort interacting with or relying on strangers, and the perception that
they shouldn’t be slacking (i.e., the feeling that searching for things online
wasn’t “real work”). Fear of negative feedback didn’t quite make this list,
but would have been the next one added if the authors weren’t quite so
strict about their statistical cutoffs. All of these factors can and should be
addressed in both in-person and online settings using methods like those in
Section 10.4, and doing so improves outcomes for everyone [Sved2016].

Productive Failure and Privilege

Some recent work has explored the notion of productive failure, where
learners are deliberately given problems that can’t be solved with the
knowledge they have, and have to go out and acquire new information
in order to make progress [Kapu2016]. Ensuring that learners are
blocked but not frustrated depends more on classroom culture and
expectations than it does on the details of particular exercises.

Productive failure is superficially reminiscent of tech’s “fail fast,
fail often” mantra, but the latter is more a sign of privilege than of
understanding. People can only afford to celebrate failure if they’re
sure they’ll get a chance to try again; many of your learners, and many
people from marginalized or underprivileged groups, can’t be sure of
that, and talking otherwise is a great way to turn them off.

Impostor Syndrome

Impostor syndrome is the belief that you aren’t really good enough for a job
or position—that your achievements are lucky flukes—and an accompanying
fear of someone finding out. Impostor syndrome is common among high
achievers who undertake publicly visible work, but most people suffer from
it occasionally to some extent. It disproportionately affects members of
under-represented groups: as discussed in Section 7.5, [Wilc2018] found
that female students with prior exposure to computing outperformed their
male peers in all areas in introductory programming courses, but were
consistently less confident in their abilities, in part because society keeps
signalling in subtle and not-so-subtle ways that they don’t really belong.

Traditional classrooms can fuel impostor syndrome. Schoolwork is fre-
quently undertaken alone or in small groups, but the results are shared and

2https://stackoverflow.com/

120

https://stackoverflow.com/

criticized publicly; as a result, we rarely see the struggles of others, only
their finished work, which can feed the belief that everyone else finds it easy.
Members of underrepresented groups who already feel additional pressure
to prove themselves may be particularly affected.

The Ada Initiative has created some guidelines3 for fighting your own
impostor syndrome, which include:

Talk about the issue with people you trust. When you hear from others
that impostor syndrome is a common problem, it becomes harder to
believe your feelings of being a fraud are real.

Go to an in-person impostor syndrome session. There’s nothing like be-
ing in a room full of people you respect and discovering that 90% of them
have impostor syndrome.

Watch your words, because they influence how you think. Saying
things like, “I’m not an expert in this, but. . . ” takes away from the
knowledge you actually possess.

Teach others about your field. You will gain confidence in your own
knowledge and skill, and you will help others avoid some impostor
syndrome shoals.

Ask questions. Asking questions can be intimidating if you think you
should know the answer, but getting answers eliminates the extended
agony of uncertainty and fear of failure.

Build alliances. Reassure and build up your friends, who will reassure and
build you up in return. (And if they don’t, find new friends.)

Own your accomplishments. Keep actively recording and reviewing what
you have done, what you have built, and what successes you’ve had.

As a teacher, you can help people with their impostor syndrome by
sharing stories of mistakes that you have made or things you struggled to
learn. This reassures the class that it’s OK to find topics hard. Being open
with the group makes it easier to build trust and make students confident to
ask questions. (Live coding is great for this: as noted in Section 8.4, your
typos show your class that you’re human.) You can also emphasize that you
want questions: you are not succeeding as a teacher if no one can follow
your class, so you’re asking students for their help to help you learn and
improve.

Stereotype Threat

Reminding people of negative stereotypes, even in subtle ways, can make
them anxious about the risk of confirming those stereotypes, which in turn
reduces their performance. This is called stereotype threat; [Stee2011]
summarizes what we know about stereotype threat in general and presents
some strategies for mitigating it in the classroom.

3https://www.usenix.org/blog/impostor-syndrome-proof-yourself-and-your-community

121

https://www.usenix.org/blog/impostor-syndrome-proof-yourself-and-your-community

Unwelcoming climates demotivate everyone, particularly members of
under-represented groups, but it’s less clear that stereotype threat is the
primary cause. Part of the problem is that the term has been used in
many ways [Shap2007]; another is questions4 about the replicability of
key studies. What is clear is that both instructors and learners must avoid
using language that suggests that some people are natural programmers
and others aren’t. Guzdial has called this the biggest myth about teaching
computer science5, and [Pati2016] backed this up by showing that people
see evidence for a “geek gene” where none exists:

Although it has never been rigorously demonstrated, there is a common
belief that CS grades are bimodal. We statistically analyzed 778 dis-
tributions of final course grades from a large research university, and
found only 5.8% of the distributions passed tests of multimodality. We
then devised a psychology experiment to understand why CS educators
believe their grades to be bimodal. We showed 53 CS professors a series
of histograms displaying ambiguous distributions and asked them to cat-
egorize the distributions. A random half of participants were primed to
think about the fact that CS grades are commonly thought to be bimodal;
these participants were more likely to label ambiguous distributions as
“bimodal”. Participants were also more likely to label distributions as
bimodal if they believed that some students are innately predisposed to do
better at CS. These results suggest that bimodal grades are instructional
folklore in CS, caused by confirmation bias and instructors’ beliefs about
their students.

Belief that some people get it and some don’t is particularly damaging
because of feedback effects. Consciously or unconsciously, teachers tend
to focus their attention on learners who seem to be doing well. That
extra attention increases the odds that they will, while the corresponding
neglect of other learners leaves them further and further behind [Alvi1999,
Brop1983, Juss2005].

Mindset

Carol Dweck and others have studied the differences of fixed mindset and
growth mindset. If people believe that competence in some area is intrinsic
(i.e., that you either “have the gene” for it or you don’t), everyone does worse,
including the supposedly advantaged. The reason is that if they don’t get it
at first, they figure they just don’t have that aptitude, which biases future

4https://www.psychologytoday.com/blog/rabble-rouser/201512/is-stereotype-threat-
overcooked-overstated-and-oversold
5http://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-
science/fulltext

122

https://www.psychologytoday.com/blog/rabble-rouser/201512/is-stereotype-threat-overcooked-overstated-and-oversold
https://www.psychologytoday.com/blog/rabble-rouser/201512/is-stereotype-threat-overcooked-overstated-and-oversold
http://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-science/fulltext
http://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-computer-science/fulltext

performance. On the other hand, if people believe that a skill is learned and
can be improved, they do better on average.

As with stereotype threat, there are concerns6 that growth mindset has
been oversold, or that research is much more difficult to put into practice
than its more enthusiastic advocates have implied. [Sisk2018] reported
two meta-analyses, one looking at the strength of the relationship between
mindset and academic achievement, the other at the effectiveness of mindset
interventions on academic achievement. The overall effects for both were
weak, but some results supported specific tenets of the theory, namely, that
students with low socioeconomic status or who are academically at risk
might benefit from mindset interventions.

10.3 Accessibility

Not providing equal access to lessons and exercises is about as demotivating
as it gets. This is often inadvertent: for example, my old online programming
lessons presented the full script of the narration beside the slides—but none
of the Python source code. Someone using a screen reader7 would therefore
be able to hear what was being said about the program, but wouldn’t know
what the program actually was.

It isn’t always possible to accommodate everyone’s needs, but it is possi-
ble to get a good working structure in place without any specific knowledge
of what specific disabilities people might have. Having at least some accom-
modations prepared in advance also makes it clear that hosts and instructors
care enough to have thought about problems in advance, and that any
additional concerns are likely to be addressed.

It Helps Everyone

Curb cutsa (the small sloped ramps joining a sidewalk to the street)
were originally created to make it easier for the physically disabled to
move around, but proved to be equally helpful to people with strollers
and grocery carts. Similarly, steps taken to make lessons more accessible
to people with various disabilities also help everyone else. Proper
captioning of images, for example, doesn’t just give screen readers
something to say: it also makes the images more findable by exposing
their content to search engines.
ahttps://en.wikipedia.org/wiki/Curb_cut

The first and most important step in making lessons accessible is to
involve people with disabilities in decision-making: the slogan nihil de nobis,
6https://educhatter.wordpress.com/2017/03/26/growth-mindset-is-the-theory-flawed-or-
has-gm-been-debased-in-the-classroom/
7https://en.wikipedia.org/wiki/Screen_reader

123

https://en.wikipedia.org/wiki/Curb_cut
https://educhatter.wordpress.com/2017/03/26/growth-mindset-is-the-theory-flawed-or-has-gm-been-debased-in-the-classroom/
https://educhatter.wordpress.com/2017/03/26/growth-mindset-is-the-theory-flawed-or-has-gm-been-debased-in-the-classroom/
https://en.wikipedia.org/wiki/Screen_reader

sine nobis8 (literally, “nothing for us without us”) predates accessibility
rights, but is always the right place to start. A few specific recommendations
are:

Find out what you need to do. Each of these posters9 offers do’s and
don’ts for people on the autistic spectrum, users of screen readers, and
people with low vision, physical or motor disabilities, hearing exercises,
and dyslexia.

Know how well you’re doing. For example, sites like WebAIM10 allow you
to check how accessible your online materials are to visually impaired
users.

Don’t do everything at once. We don’t ask learners in our workshops to
adopt all our best practices or tools in one go, but instead to work things
in gradually at whatever rate they can manage. Similarly, try to build in
accessibility habits when preparing for workshops by adding something
new each time.

Do the easy things first. There are plenty of ways to make workshops
more accessible that are both easy and don’t create extra cognitive load
for anyone: font choices, general text size, checking in advance that your
room is accessible via an elevator or ramp, etc.

[Coom2012, Burg2015] are good guides to visual design for accessibility.
Their recommendations include:

Format documents with actual headings and other landmarks, rather
than just changing font sizes and styles.

Avoid using color alone to convey meaning in text or graphics: use
color plus cross-hatching or colors that are noticeably different in
grayscale.

Remove all unnecessary elements rather than just making them invisible,
because screen readers will still often say them aloud.

Allow self-pacing and repetition for people with reading or hearing is-
sues.

Include narration of on-screen action in videos.

Conduct Revisited

We said in Section 1.5 that classes should enforce a Code of Conduct like
the one in Appendix D. This is a form of accessibility: while closed captions
make video accessible to people with hearing disabilities, a Code of Conduct
makes lessons accessible to people who would otherwise be marginalized.

8https://en.wikipedia.org/wiki/Nothing_About_Us_Without_Us
9https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-
accessibility/
10http://webaim.org/

124

https://en.wikipedia.org/wiki/Nothing_About_Us_Without_Us
https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/
https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/
http://webaim.org/

As discussed in Section 9.1, the details of the Code of Conduct are
important, but the most important thing about it is that it exists and is
enforced. Knowing that there are rules tells people a great deal about your
values and about what kind of learning experience they can expect.

Group Signup

One way to support learners from marginalized groups is to have people
sign up for workshops in groups rather than individually. That way,
everyone in the room will know in advance that they will be with at
least a few people they trust, which increases the chances of them
actually coming. It also helps after the workshop: if people come with
their friends or colleagues, they can work together to use what they’ve
learned.

10.4 Inclusivity

Inclusivity is a policy of including people who might otherwise be excluded
or marginalized. In computing, it means making a positive effort to be more
welcoming to women, under-represented racial or ethnic groups, people
with various sexual orientations, the elderly, the physically exercised, the
formerly incarcerated, the economically disadvantaged, and everyone else
who doesn’t fit Silicon Valley’s white/Asian male demographic. [Lee2017]
is a brief, practical guide to doing that with references to the research
literature. The practices it describes help learners who belong to one or
more marginalized or excluded groups, but help motivate everyone else as
well; while they are phrased in terms of term-long courses, many can be
applied in our workshops:

Ask learners to email you before the workshop to explain how they be-
lieve the training could help them achieve their goals.

Review your notes to make sure they are free from gendered pronouns,
include culturally diverse names, etc.

Emphasize that what matters is the rate at which they are learning,
not the advantages or disadvantages they had when they started.

Encourage pair programming.
Actively mitigate behavior that some learners may find intimidating,

e.g., use of jargon or “questions” that are actually asked to display
knowledge.

At a higher level, committing to inclusive teaching may mean fundamen-
tally rethinking content. This is a lot of work, but the rewards can be signifi-
cant. For example, [DiSa2014a] found that 65% of male African-American
participants in a game testing program went on to study computing, in

125

part because the gaming aspect of the program was something their peers
respected.

Work like this has to be done carefully. [Lach2018] explored two strate-
gies:

Community representation highlights students’ social identities, histories,
and community networks using after-school mentors or role models from
students’ neighborhoods, or activities that use community narratives and
histories as a foundation for a computing project.

Computational integration incorporates ideas from the learner’s commu-
nity, e.g., reverse engineering indigenous graphic designs in a visual
programming environment.

The major risks of these approaches are shallowness (for community
representation), e.g., using computers to build slideshows rather than do any
real computing, and cultural appropriation (for computational integration),
e.g., using practices without acknowledging origins. When in doubt, ask
your learners and members of their community what they think you ought
to do and give them control over content and direction. We return to this in
Chapter 13.

Spoons

In 2003, Christine Miserandino started using spoons11 as a way to explain
what it’s like to live with chronic illness. Healthy people start each day with
an unlimited supply of spoons, but people with lupus or other debilitating
conditions only have a few, and everything they do costs them one. Getting
out of bed? That’s a spoon. Making a meal? That’s another spoon, and
pretty soon, you’ve run out.

You cannot simply just throw clothes on when you are sick. . . If my hands
hurt that day buttons are out of the question. If I have bruises that day, I
need to wear long sleeves, and if I have a fever I need a sweater to stay
warm and so on. If my hair is falling out I need to spend more time to
look presentable, and then you need to factor in another 5 minutes for
feeling badly that it took you 2 hours to do all this.

Spoons are often invisible, but as Elizabeth Patitsas has argued12, people
who have a lot can accumulate more, but people whose supply of spoons
is limited may struggle to get ahead of the game. When you are design-
ing classes and exercises, try to take into account the fact that some of
your learners may have physical or mental obstacles that aren’t obvious.
Again, when in doubt, ask your learners: they almost certainly have more
experience with what works and what doesn’t than anyone else.

11https://butyoudontlooksick.com/articles/written-by-christine/the-spoon-theory/
12https://patitsas.blogspot.com/2018/03/spoons-are-form-of-capital.html

126

https://butyoudontlooksick.com/articles/written-by-christine/the-spoon-theory/
https://patitsas.blogspot.com/2018/03/spoons-are-form-of-capital.html

Moving Past the Deficit Model

Depending on whose numbers you trust, only 12–18% of people getting
computer science degrees are women, which is less than half the percentage
seen in the mid-1980s (Figure 10.2). And western countries are the odd
ones for having such low percentage of women in computing: women
are still often 30–40% of computer science students elsewhere [Galp2002,
Varm2015].

Figure 10.2: Degrees Awarded and Female Enrollment (from [Robe2017])

Since it’s unlikely that women have changed drastically in the last thirty
years, we have to look for structural causes to understand what’s gone
wrong and how to fix it. One reason is the way that home computers were
marketed as “boys’ toys” starting in the 1980s [Marg2003]; another is the
way that computer science departments responded to explosive growth in
enrollment in the 1980s and again in the 2000s by changing admission
requirements [Robe2017], and as noted at the start of this section, these
factors have excluded many other people as well. None of these factors may
seem dramatic to people who aren’t affected by them, but they act like the
steady drip of water on a stone: over time, they erode motivation, and with
it, participation.

The first and most important step toward fixing this is to stop thinking in
terms of a “leaky pipeline” [Mill2015]. More generally, we to move past a
deficit model i.e., to stop thinking that the members of under-represented
groups lack something and are therefore responsible for not getting ahead.
Believing that puts the burden on people who already have to work harder
because of the inequities they face, and (not coincidentally) gives those who
benefit from the current arrangements an excuse not to look at themselves
too closely.

127

Rewriting History

[Abba2012] describes the careers and accomplishments of the women
who shaped the early history of computing, but have all too often been
written out of that history; [Ensm2003, Ensm2012] describes how
programming was turned from a female into a male profession in the
1960s, while [Hick2018] looks at how Britain lost its early dominance
in computing by systematically discriminating against its most qualified
workers: women. [Milt2018] is a good review of all three books.
Discussing this can make some men in computing very uncomfortable;
in my opinion, that’s a good reason to do it more often.

Misogyny in video games, the use of “cultural fit” in hiring to excuse
conscious or unconscious bias, a culture of silence around harassment,
and the growing inequality in society that produces preparatory privilege
(Section 9.5) may not be any one person’s fault, but they are everyone’s
responsibility. This workshop13 has excellent practical advice on how to be
a good ally in tech; we will return to this topic in Chapter 13.

10.5 Exercises

Authentic Tasks (pairs/15 minutes)

Think about something you did this week that uses one or more of the skills
you teach, (e.g., wrote a function, bulk downloaded data, did some stats in
R, forked a repo) and explain how you would use it (or a simplified version
of it) as an exercise or example in class.

1. Pair up with your neighbor and decide where this exercise fits on a 2×2
grid of “short/long time to master” and “low/high usefulness”.

2. Write the task and where it fits on the grid.
3. Discuss how these relate back to the “teach most immediately useful

first” approach.

Core Needs (whole class/10 minutes)

Paloma Medina identifies six core needs14 for people at work: belonging,
improvement (i.e., making progress), choice, equality, predictability, and
significance. After reading her description of these, order them from most to
least significant for you personally, then compare rankings with your class
using 6 points for most important, 5 for next, and so on down to 1 for least
important. How do you think your rankings compare with those of your
learners?
13https://frameshiftconsulting.com/ally-skills-workshop/
14https://www.palomamedina.com/biceps

128

https://frameshiftconsulting.com/ally-skills-workshop/
https://www.palomamedina.com/biceps

Implement One Strategy for Inclusivity (individual/5 minutes)

Pick one activity or change in practice from [Lee2017] that you would like
to work on. Put a reminder in your calendar three months in the future to
self-check whether you have done something about it.

Brainstorming Motivational Strategies (think-pair-share/20
minutes)

1. Think back to a programming course (or any other) that you took in
the past, and identify one thing the instructor did that demotivated
you, and describe what could have been done afterward to correct the
situation.

2. Pair up with your neighbor and discuss your stories, then add your
comments to the shared notes.

3. Review the comments in the shared notes as a group. Rather than read
them all out loud, highlight and discuss a few of the things that could
have been done differently. This will give everyone some confidence in
how to handle these situations in the future.

Demotivational Experiences (think-pair-share/15 minutes)

Think back to a time when you demotivated a student (or when you were
demotivated as a student). Pair up with your neighbor and discuss what
you could have done differently in the situation, and then share the story
and what could have been done in the group notes.

Walk the Route (whole class/15 minutes)

Find the nearest public transportation drop-off point to your building and
walk from there to your office and then to the nearest washroom, making
notes about things you think would be difficult for someone with mobility
issues. Now borrow a wheelchair and repeat the journey. How complete
was your list of exercises? And did you notice that the first sentence in this
exercise assumed you could actually walk?

Who Decides? (whole class/15 minutes)

In [Litt2004], Kenneth Wesson wrote, “If poor inner-city children consis-
tently outscored children from wealthy suburban homes on standardized
tests, is anyone naive enough to believe that we would still insist on using
these tests as indicators of success?” Read this article15 by Cameron Cot-

15https://mobile.nytimes.com/2016/04/10/upshot/why-talented-black-and-hispanic-
students-can-go-undiscovered.html

129

https://mobile.nytimes.com/2016/04/10/upshot/why-talented-black-and-hispanic-students-can-go-undiscovered.html
https://mobile.nytimes.com/2016/04/10/upshot/why-talented-black-and-hispanic-students-can-go-undiscovered.html

trill, and then describe an example from your own experience of “objective”
assessments that reinforced the status quo.

Common Stereotypes (pairs/10 minutes)

You will (still) sometimes hear people say, “It’s so simple that even your
grandmother could use it.” In pairs, list two or three other phrases that
reinforce stereotypes about computing.

Not Being a Jerk (individual/15 minutes)

This short article16 by Gary Bernhardt rewrites an unnecessarily hostile
message to be less rude. Using it as a model, find something unpleasant on
Stack Overflow17 or some other public discussion forum and rewrite it to be
less repellant.

Saving Face (individual/10 minutes)

Are there any aspects of what you want to teach that members of your
hoped-for audience might be embarrassed to admit to not knowing already?
Are there any that they would rather their peers didn’t know they were
learning? If so, what can you do to help them save face?

After the Fact (whole class/15 minutes)

[Cutt2017] surveyed adult computer users about their childhood activities
and found that the strongest correlation between confidence and computer
use were based on reading on one’s own and playing with construction toys
with no moving parts (like Lego). Spend a few minutes searching online for
ideas programmers have about how to tell if someone is going to be a good
coder, or what non-coding activities correlate with programming ability, and
see if these two ever come up.

How Accessible Are Your Lessons? (pairs/30 minutes)

In pairs, choose a lesson whose materials are online and independently rank
it according to the do’s and don’ts in these posters18. Where did you and
your partner agree? Where did you disagree? How well did the lesson do
for each of the six categories of user?

16https://www.destroyallsoftware.com/blog/2018/a-case-study-in-not-being-a-jerk-in-
open-source
17http://stackoverflow.com
18https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-
accessibility/

130

https://www.destroyallsoftware.com/blog/2018/a-case-study-in-not-being-a-jerk-in-open-source
https://www.destroyallsoftware.com/blog/2018/a-case-study-in-not-being-a-jerk-in-open-source
http://stackoverflow.com
https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/
https://accessibility.blog.gov.uk/2016/09/02/dos-and-donts-on-designing-for-accessibility/

Tracing the Cycle (small groups/15 minutes)

[Coco2018] traces a depressingly common pattern in which good intentions
are undermined by an organization’s leadership being unwilling to actually
change. Working in groups of 4–6, write brief emails that you imagine each
of the parties involved would send to the other at each stage in this cycle.

131

11 Teaching Online

After reading this chapter, you will be able to. . .

• Explain why expectations for massive online courses were unrealis-
tic.

• Explain what personalized learning is, and how the term is some-
times misused.

• Describe several key practices of successful automated courses.
• Summarize at least four features that make instructional videos

engaging.

If you use robots to teach, you teach people to be robots.
— variously attributed

Technology has changed teaching and learning many times. Before
blackboards were introduced into schools in the early 1800s, for example,
there was no way for teachers to share an improvised example, diagram, or
exercise with an entire class at once. Combining low cost, low maintenance,
reliability, ease of use, and flexibility, blackboards enabled teachers to do
things quickly and at scale that they had only been able to do slowly and
piecemeal before. Similarly, the hand-held video camera revolutionized
athletics training, just as the tape recorder revolutionized music instruction
a decade earlier.

Many of the people pushing the Internet into classrooms don’t know this
history, and don’t realize that it is just the latest in a long series of attempts1

to use machines to teach [Watt2014]. From the printing press through radio
and television to desktop computers and mobile devices, every new way to
share knowledge has produced a wave of aggressive optimists who believe
that education is broken and that technology can fix it. However, ed tech’s
strongest advocates have often known less about “ed” than they do about
“tech”, and have often been driven more by the prospect of profit than by
the desire to improve learning.

1http://teachingmachin.es/timeline.html

133

http://teachingmachin.es/timeline.html

Today’s debate is often muddied by the fact that “online” and “automated”
don’t have to be the same thing. Live online teaching can be a lot like leading
a small-group discussion. Conversely, the only way to teach several hundred
people at a time is to standardize and automate assessment; the learner’s
experience is largely the same from whether the automation uses software
or a squad of teaching assistants working to a tightly-defined rubric.

This chapter therefore looks at how the Internet can and should be used
to deliver automated instruction, i.e., to teach with recorded videos and
assess via automatically-graded exercises. The next chapter will then explore
ways of combining automated instruction with live teaching delivered either
online or in person.

11.1 MOOCs

The highest-profile effort to reinvent education using the Internet is the
Massive Open Online Course, or MOOC. The term was invented by David
Cormier in 2008 to describe a course organized by George Siemens and
Stephen Downes. That course was based on a connectivist view of learning,
which holds that knowledge is distributed and learning is the process of
finding, creating, and pruning connections.

The term “MOOC” was quickly co-opted by creators of courses that kept
more closely to the hub-and-spoke model of a traditional classroom, with
the instructor at the center defining goals and the learners seen as recipients
or replicators of knowledge. Classes that use the original connectivist model
are now sometimes referred to as “cMOOCs”, while classes that centralize
control are called “xMOOCs”. (The latter kind of course is also sometimes
called a “MESS”, for Massively Enhanced Sage on the Stage.)

Two strength of the MOOC model are that learners can work when it’s
convenient for them, and that they have access to a wider range of courses,
both because the Internet brings them all next door and because online
courses typically have lower direct and indirect costs than in-person courses.
Five years ago, you couldn’t cross the street on a major university cam-
pus without hearing some talking about how MOOCs would revolutionize
education, destroy it, or possibly both.

But MOOCs haven’t been nearly as effective as their more enthusiastic
proponents claimed they would be [Ubel2017]. One reason is that recorded
content is ineffective for many novices because it cannot clear up their indi-
vidual misconceptions (Chapter 2): if they don’t understand an explanation
the first time around, there usually isn’t a different one on offer. Another
is that the automated assessment necessary in order to put the “massive”
in MOOC only works well at the lower levels of Bloom’s Taxonomy. It’s
also now clear that learners have to shoulder much more of the burden of

134

staying focused in a MOOC, and that the impersonality of working online
can demotivate people and encourage uncivil behavior.

[Marg2015] examined 76 MOOCs on various subjects, and found that
the quality of lesson design was poor, though organization and presentation
of material was good. Closer to home, [Kim2017] studied 30 popular online
coding tutorials, and found that they largely teach the same content the
same way: bottom-up, starting with low-level programming concepts and
building up to high-level goals. Most require learners to write programs,
and provide some form of immediate feedback, but this feedback is typically
very shallow. Few explain when and why concepts are useful (i.e., they don’t
show how to transfer knowledge) or provide guidance for common errors,
and other than rudimentary age-based differentiation, none personalize
lessons based on prior coding experience or learner goals.

Personalized Learning

Few terms have been used and abused in as many ways as personalized
learning. To most ed tech proponents, it means dynamically adjusting
the pace or focus of lessons based on learner performance, which in
practice means that if someone answers several questions in a row
correctly, the computer will skip some of the subsequent questions.

Doing this can produce modest improvementsa in outcomes, but
better is possible. For example, if many learners find a particular topic
difficult, the teacher can prepare multiple alternative explanations
of that point—essentially, multiple paths forward through the lesson
rather than accelerating a single path—so that if one explanation
doesn’t resonate, others are available. However, this requires a lot more
design work on the teacher’s part, which may be why it’s a less popular
approach with the tech crowd.

And even if it does work, the effects are likely to be much less
than some of its advocates believe. A good teacher makes a difference
of 0.1–0.15 standard deviations in end-of-year performance in grade
school [Chet2014] (see this articleb for a brief summary). It’s simply
unrealistic to believe that any kind of automation can outdo this any
time soon.
ahttps://www.rand.org/pubs/research_briefs/RB9994.html
bhttp://educationnext.org/in-schools-teacher-quality-matters-most-coleman/

So how should the web be used in teaching and learning tech skills?
From an educational point of view, its pros and cons are:

Learners can access more lessons, more quickly, than ever before.
Provided, of course, that a search engine considers those lessons worth
indexing, that their internet service provider and government don’t

135

https://www.rand.org/pubs/research_briefs/RB9994.html
http://educationnext.org/in-schools-teacher-quality-matters-most-coleman/

block it, that the truth isn’t drowned in a sea of attention-sapping
disinformation.

Learners can access better lessons than ever before, unless they are be-
ing steered toward second-rate material in order to redistribute wealth
from the have-nots to the haves [McMi2017]. (It’s worth remembering
that scarcity increases perceived value, so as online education becomes
cheaper, it will be seen as being worth less.)

Learners can access far more people than ever before as well. But
only if those learners actually have access to the required technology, can
afford to use it, and aren’t driven offline by harassment or marginalized
because they don’t conform to the social norms of whichever group is
talking loudest. In practice, most MOOC users come from secure, affluent
backgrounds [Hansen2015].

Teachers can get far more detailed insight into how learners work.
So long as learners are doing things that are amenable to large-scale
automated analysis and either don’t object to the use of ubiquitous
surveillance in the classroom, or aren’t powerful enough for their
objections to matter.

[Marg2015, Mill2016a, Nils2017] describe ways to accentuate the positives
in the list above while avoiding the negatives:

Make deadlines frequent and well-publicized, and enforce them, so that
learners will get into a work rhythm.

Keep synchronous all-class activities like live lectures to a minimum
so that people don’t miss things because of scheduling conflicts.

Have learners contribute to collective knowledge, e.g., take notes
together (Section 9.7), serve as classroom scribes, or contribute problems
to shared problem sets (Section 5.3).

Encourage or require learners to do some of their work in small groups
that do have synchronous online activities such as a weekly online
discussion to help learners stay engaged and motivated without creating
too many scheduling headaches. (See Appendix F for some tips on how
to make these discussions fair and productive.)

Create, publicize, and enforce a code of conduct so that everyone can
actually (as opposed to theoretically) take part in online discussions
(Section 1.5).

Use lots of short lesson episodes rather than a handful of lecture-length chunks
in order to minimize cognitive load and provide lots of opportunities for
formative assessment. This also helps with maintenance: if all of your
videos are short, you can simply re-record any that need maintenance,
which is often cheaper than trying to patch longer ones.

Use video to engage rather than instruct, since, disabilities aside, learn-
ers can read faster than you can talk. The exception to this rule is that
video is actually the best way to teach people verbs (actions): short

136

screencasts that show people how to use an editor, step through code in a
debugger, and so on are more effective than screenshots with text.

Identify and clear up misconceptions early (Chapter 2). If data shows
that learners are struggling with some parts of a lesson, create alternative
explanations of those points and extra exercises for them to practice on.

All of this has to be implemented somehow, which means that you
need some kind of teaching platform. You can either use an all-in-one
learning management system like Moodle2 or Sakai3, or assemble something
yourself using Slack4 or Zulip5 for chat, Google Hangouts6 or appear.in7 for
video conversations, and WordPress8, Google Docs9, or any number of wiki
systems for collaborative authoring. If you are just starting out, then use
whatever requires the least installation and administration on your side, and
the least extra learning effort on your learners’ side. (I once ran a half-day
class using group text messages because that was the only tool everyone
was already familiar with.)

The most important thing when choosing technology is to ask your
learners what they are already using. Normal people don’t use IRC10, and
find its arcane conventions and interface offputting. Similarly, while this
book lives in a GitHub11 repository, requiring non-experts to submit pull
requests has been an unmitigated disaster, even with GitHub’s online editing
tools. As a teacher, you’re asking people to learn a lot; the least you can do
in return is learn how to use the tools they prefer.

Points for Improvement

One way to demonstrate to learners that they are learning with you,
not just from you, is to allow them to edit your course notes. In live
courses, we recommend that you enable them to do this as you lecture
(Section 9.7); in online courses, you can put your notes into a wiki, a
Google Doc, or anything else that allows you to review and comment
on changes. Giving people credit for fixing mistakes, clarifying explana-
tions, adding new examples, and writing new exercises doesn’t reduce
your workload, but increases engagement and the lesson’s lifetime
(Section 6.3).

2http://moodle.org
3https://www.sakaiproject.org/
4http://slack.com
5https://zulipchat.com/
6http://hangouts.google.com
7https://appear.in/
8https://wordpress.org/
9http://docs.google.com
10https://en.wikipedia.org/wiki/Internet_Relay_Chat
11http://github.com

137

http://moodle.org
https://www.sakaiproject.org/
http://slack.com
https://zulipchat.com/
http://hangouts.google.com
https://appear.in/
https://wordpress.org/
http://docs.google.com
https://en.wikipedia.org/wiki/Internet_Relay_Chat
http://github.com

A major concern with any online community, learning or otherwise, is
how to actually make it a community. Hundreds of books and presentations
discuss this, but most are based on their authors’ personal experiences.
[Krau2016] is a welcome exception: while it predates the accelerating
descent of Twitter and Facebook into weaponized abuse and misinformation,
most of what was true then is true now. [Foge2005] is also full of useful
tips for the community of practice that learners may hope to join.

Freedom To and Freedom From

Isaiah Berlin’s 1958 essay “Two Concepts of Libertya” made a distinction
between positive liberty, which is the ability to actually do something,
and negative liberty, which is the absence of rules saying that you
can’t do it. Unchecked, online discussions usually offer negative liberty
(nobody’s stopping you from saying what you think) but not positive
liberty (many people can’t actually be heard). One way to address
this is to introduce some kind of throttling, such as only allowing each
learner to contribute one message per discussion thread per day. Doing
this gives those with something to say a chance to say it, while clearing
space for others to say things as well.
ahttps://en.wikipedia.org/wiki/Two_Concepts_of_Liberty

One other concern people have about teaching online is cheating. Day-
to-day dishonesty is no more common in online classes than in face-to-face
settings [Beck2014], but the temptation to have someone else write the
final exam, and the difficulty of checking whether this happened, is one of
the reasons educational institutions have been reluctant to offer credit for
pure online classes. Remote exam proctoring is possible, usually by using a
webcam to watch the learner take the exam. Before investing in this, read
[Lang2013], which explores why and how learners cheat, and how courses
can be structured to avoid giving them a reason to do so.

11.2 Video

A core element of cMOOCs is their reliance on recorded video lectures. As
mentioned in Chapter 8, a teaching technique called Direct Instruction that
is based on precise delivery of a well-designed script has repeatedly been
shown to be effective [Stoc2018], so recorded videos can in principle be
effective. However, scripts for direct instruction have to be designed, tested,
and refined very carefully, which is an investment that many MOOC authors
have been unwilling or unable to make. Making a small change to a web
page or a slide deck only takes a few minutes; making even a small change
to a short video takes an hour or more, so the cost to the teacher of acting on
feedback can be unsupportable. And even when they’re well made, videos

138

https://en.wikipedia.org/wiki/Two_Concepts_of_Liberty

have to be combined with activities to be beneficial: [Koed2015] estimated,
“. . . the learning benefit from extra doing. . . to be more than six times that of
extra watching or reading.”

If you are teaching programming, you may use screencasts instead
of slides, since they offer some of the same advantages as live coding
(Section 8.4). [Chen2009] offers useful tips for creating and critiquing
screencasts and other videos; Figure 11.1 reproduces the patterns that paper
presents and the relationships between them, and is also a good example of
a concept map (Section 3.1).

Rehearsal
Script

Focused
View

Prepared
Text

Slower
Pace

Short &
Sweet

Silent
Narration

Narrow
Focus

Mouse
Focus

Keyboard
Focus

Multiple
Passes

Chapter
Tracks

Bundled
Resources Embellishments Picture

Slides

Prepare to start a
screencast

Decide on screen area
to focus

Make a succinct
screencast

Insert text without
making typos

Pace yourself for
screencasting

Allow time
to read

Record without
audio

Stick to
time limits

Show mouse and
keyboard

interactions

Show mouse
interactions

Show keyboard
interactions

Keep
viewer

focused

Merge different
screencasts

Bundle extra
resources

Advertise
resources

Separate important
actions

Package
into

Add merited
visual effects

Add static
content

Show keyboard
entries

Figure 11.1: Patterns for Screencasting (from [Chen2009])

139

[Guo2014] measured engagement by looking at how long learners
watched MOOC videos. Some of its key findings were:

• Shorter videos are much more engaging—videos should be no more than
six minutes long.

• A talking head superimposed on slides is more engaging than voice over
slides alone.

• Videos that felt personal could be more engaging than high-quality
studio recordings, so filming in informal settings could work better than
professional studio work for lower cost.

• Drawing on a tablet is more engaging than PowerPoint slides or code
screencasts, though it’s not clear whether this is because of the motion
and informality, or because it reduces the amount of text on the screen.

• It’s OK for teachers to speak fairly fast as long as they are enthusiastic.

One thing [Guo2014] didn’t address is the chicken-and-egg problem:
do learners find a certain kind of video engaging because they’re used
to it, so producing more videos of that kind will increase engagement
simply because of a feedback loop? Or do these recommendations reflect
some deeper cognitive processes? Another thing this paper didn’t look at
is learning outcomes: we know that learner evaluations of courses don’t
correlate with learning [Star2014, Uttl2017], and while it’s plausible that
learners won’t learn from things they don’t watch, it remains to be proven
that they do learn from things they do watch.

I’m a Little Uncomfortable

[Guo2014]’s research was approved by a university research ethics
board, the learners whose viewing habits were monitored almost cer-
tainly clicked “agree” on a terms of service agreement at some point,
and I’m glad to have these insights. On the other hand, I attended the
conference at which this paper was published, and the word “privacy”
didn’t appear in the title or abstract of any of the dozens of papers or
posters presented. Given a choice, I’d rather not know how engaged
learners are than see privacy become obsolete.

There are many different ways to record video lessons; to find out which
are most effective, [Mull2007a] assigned 364 first-year physics learners to
online multimedia treatments of Newton’s First and Second Laws in one of
four styles:

Exposition: concise lecture-style presentation.
Extended Exposition: as above with additional interesting information.
Refutation: Exposition with common misconceptions explicitly stated and

refuted.
Dialog: Learner-tutor discussion of the same material as in the Refutation.

140

Refutation and Dialogue produced the greatest learning gains compared
to Exposition; learners with low prior knowledge benefited most, and those
with high prior knowledge were not disadvantaged.

11.3 Flipped Classrooms

Fully automated teaching is one way to use the web in teaching; in practice,
almost all learning in affluent societies has an online component: sometimes
officially, and if not, through peer-to-peer back channels and surreptitious
searches for answers to homework questions. Combining live and automated
instruction allows instructors to use the strengths of both. In a classroom, the
instructor can answer questions immediately, but it takes time for learners to
get feedback on their coding exercises (sometimes days or weeks). Online,
it can take a long time to get an answer, but learners can get immediate
feedback on their coding (at least for those kinds of exercises we can auto-
grade).

Similarly, online exercises have to be more detailed because they’re an-
ticipating questions. I find that in-person lessons start with the intersection
of what everyone needs to know and expands on demand, while online
lessons have to include the union of what everyone needs to know because
you aren’t there to do the expanding.

The most popular hybrid teaching strategy today is the flipped class-
room, in which learners watch recorded lessons on their own, and class
time is used for discussion and to work through problem sets. Originally
proposed in [King1993], the idea was popularized as part of peer instruction
(Section 9.2), and has been studied intensively over the past decade. For
example, [Camp2016] compared students who chose to take a CS1 class
online with those who took it in person in a flipped classroom. Completion
of (unmarked) practice exercises correlated with exam scores for both, but
the completion rate of rehearsal exercises by online students was signifi-
cantly lower than lecture attendance rates for in-person students. Looking
at what did affect the grade, they found that the students’ perception of the
material’s intrinsic value was only a factor for the flipped section (and only
once results were controlled for prior programming experience). Conversely,
test anxiety and self-efficacy were factors only for the online section; the
authors recommend trying to improve self-efficacy by increasing instructor
presence online.

But are lectures worth attending at all? Or should we just provide
recordings? [Nord2017] examined the impact of recordings on both lecture
attendance and students’ performance at different levels. In most cases
the study found no negative consequences of making recordings available;
in particular, students don’t skip lectures when recordings are available
(at least, not any more than they usually do). The benefits of providing

141

recordings are greatest for students early in their careers, but diminish as
students become more mature.

11.4 Life Online

[Nuth2007] found that there are three overlapping worlds in every class-
room: the public (what the teacher is saying and doing), the social (peer-to-
peer interactions between learners), and the private (inside each learner’s
head). Of these, the most important is usually the social: learners pick up
as much via cues from their peers as they do from formal instruction.

The key to making any form of online teaching effective is therefore
to facilitate peer-to-peer interactions. To aid this, courses almost always
have some kind of discussion forum. [Vell2017] analyzes discussion forum
posts from 395 CS2 students at two universities by dividing them into four
categories:

Active: request for help that does not display reasoning and doesn’t display
what the student has already tried or already knows.

Constructive: reflect students’ reasoning or attempts to construct a solution
to the problem.

Logistical: course policies, schedules, assignment submission, etc.
Content clarification: request for additional information that doesn’t re-

veal the student’s own thinking.

They found that constructive and logistical questions dominated, and
that constructive questions correlated with grades. They also found that
students rarely ask more than one active question in a course, and that these
don’t correlate with grades. While this is disappointing, knowing it helps set
instructors’ expectations: while we might all want our courses to have lively
online communities, most won’t.

Learners use forums in very different ways, and with very different
results. [Mill2016a] observed that, “. . . procrastinators are particularly
unlikely to participate in online discussion forums, and this reduced partici-
pation, in turn, is correlated with worse grades. A possible explanation for
this correlation is that procrastinators are especially hesitant to join in once
the discussion is under way, perhaps because they worry about being per-
ceived as newcomers in an established conversation. This aversion to jump
in late causes them to miss out on the important learning and motivation
benefits of peer-to-peer interaction.”

142

Co-opetition

[Gull2004] describes an innovative online coding contest that combines
collaboration and competition. The contest starts when a problem de-
scription is posted along with a correct, but inefficient, solution. When
it ends, the winner is the person who has made the greatest overall
contribution to improving the performance of the overall solution. All
submissions are in the open, so that participants can see one another’s
work and borrow ideas from each other; as the paper shows, the final
solution is almost always a hybrid borrowing ideas from many people.

[Batt2018] described a small-scale variation of this used in an in-
troductory computing class. In stage one, each student submitted a
programming project individually. In stage two, students were paired to
create an improved solution to the same problem. The assessment indi-
cates that two-stage projects tend to improve students’ understanding,
and that they enjoyed the process.

Discussion isn’t the only way to get students to work together online.
[Pare2008] and [Kulk2013] report experiments in which learners grade
each other’s work, and the grades they assign are then compared with
grades given by graduate-level teaching assistants or other experts. Both
found that student-assigned grades agreed with expert-assigned grades
as often as the experts’ grades agreed with each other, and that a few
simple steps (such as filtering out obviously unconsidered responses or
structuring rubrics) decreased disagreement even further. And as discussed
in Section 5.3, collusion and bias are not significant factors in peer grading.

[Cumm2011] looked at the use of shareable feedback tags on homework;
students could attach tags to specific locations in coding assignments (like
code review) so that there’s no navigational cost for the reader, and they
controlled whether to share their work and feedback anonymously. Students
found tag clouds of feedback on their own work useful, but that the tags
were really only meaningful in context. This is unsurprising: the greater
the separation between action and feedback, the greater the cognitive load.
What wasn’t expected was that the best and worst students were more likely
to share than middling students.

Trust, but Educate

The most common way to measure the validity of feedback is to com-
pare students’ grades to experts’ grades, but calibrated peer review
(Section 5.3) can be equally effective. Before asking learners to grade
each others’ work, they are asked to grade samples and compare their
results with the grades assigned by the teacher. Once the two align, the
learner is allowed to start giving grades to peers. Given that critical

143

reading is an effective way to learn, this result may point to a future in
which learners use technology to make judgments, rather than being
judged by technology.

One technique we will definitely see more of in coming years is on-
line streaming of live coding sessions [Haar2017]. This has most of the
benefits discussed in Section 8.4, and when combined with collaborative
note-taking (Section 9.7) it can come pretty close to approximating an
in-class experience.

Looking even further ahead, [Ijss2000] identified four levels of online
presence, from realism (we can’t tell the difference) through immersion
(we forget the difference) and involvement (we’re engaged but aware of
the difference) to suspension of disbelief (we are doing most of the work).
Crucially, they distinguish physical presence, which is the sense of actually
being somewhere, and social presence, which is the sense of being with
others. In most learning situations, the latter is more important, and one
way to foster it is to bring the technology learners use every day into the
classroom. For example, [Deb2018] found that doing in-class exercises with
realtime feedback using mobile devices improved concept retention and
student engagement while reducing failure rates.

Hybrid Presence

Combining online and in-person instruction can be more effective than
either on its own. I have delivered very successful classes using real-
time remote instruction, in which the learners are co-located at 2–6
sites, with helpers present, while I taught via streaming video (Sec-
tion C.2). This scales well, saves on travel costs, and is less disruptive
for learners (particularly those with family responsibilities). What
doesn’t work is having one group in person and one or more groups
remotely: with the best will in the world, the local participants get far
more attention.

Online teaching is still in its infancy: [Luxt2009] surveyed peer assess-
ment tools that could be useful in computing education, and [Broo2016]
describes many other ways groups can discuss things, but only a handful of
these ideas are widely known or used.

I think that our grandchildren will probably regard the distinction we
make between what we call the real world and what they think of as
simply the world as the quaintest and most incomprehensible thing about
us.
— William Gibson

144

11.5 Exercises

Give Feedback on a Bad Screencast (whole class/20 minutes)

Watch this screencast12 as a group and give feedback on it. Organize
feedback along two axes: positive vs. negative and content vs. presentation.
When you are done, have each person in the class add one point to a 2×2
grid on a whiteboard (or in the shared notes) without duplicating any points
that are already up there. What did other people see that you missed? What
did they think that you strongly agree or disagree with? (You can compare
your answers with the checklist in Appendix J.)

Two-Way Video (pairs/10 minutes)

Record a 2–3 minute video of yourself doing something, then swap machines
with a partner so that each of you can watch the other’s video at 4X speed.
How easy is it to follow what’s going on? What if anything did you miss?

Viewpoints (individual/10 minutes)

According to [Irib2009], different disciplines focus on different factors
affecting the success or otherwise of online communities:

Business: customer loyalty, brand management, extrinsic motivation.
Psychology: sense of community, intrinsic motivation.
Sociology: group identity, physical community, social capital, collective

action.
Computer Science: technological implementation.

Which of these perspectives most closely corresponds to your own? Which
are you least aligned with?

Helping or Harming (small groups/30 minutes)

Susan Dynarski’s article in the New York Times13 explains how and why
schools are putting students who fail in-person courses into online courses,
and how this sets them up for even further failure.

1. Working in small groups, read the article, come up with 2–3 things that
schools could do to compensate for these negative effects, and create
rough estimates of their per-student costs.

12https://youtu.be/xcnoHaxXvdQ
13https://www.nytimes.com/2018/01/19/business/online-courses-are-harming-the-
students-who-need-the-most-help.html

145

https://youtu.be/xcnoHaxXvdQ
https://www.nytimes.com/2018/01/19/business/online-courses-are-harming-the-students-who-need-the-most-help.html
https://www.nytimes.com/2018/01/19/business/online-courses-are-harming-the-students-who-need-the-most-help.html

2. Compare your suggestions and costs with those of other groups. How
many full-time teaching positions do you think would have to be cut in
order to free up resources to implement the most popular ideas for 100
students?

3. As a class, do you think that would be a net benefit for the students or
not?

Budgeting exercises like this are a good way to tell who’s serious about
educational change. Everyone can think of things they’d like to do; far fewer
are willing to talk about the tradeoffs needed to make change happen.

146

12 Exercise Types

After reading this chapter, you will be able to. . .

• Describe four types of formative assessment exercises for program-
ming classes.

• Describe two kinds of feedback on programming exercises that can
be given by automated tools.

Every good carpenter has a set of screwdrivers, and every good teacher
has different kinds of formative assessment exercises to check what learners
are actually learning, help them practice their new skills, and keep them
engaged. This chapter starts by describing several kinds of exercises you
can use to check if your teaching has been effective. It then looks at the
state of the art in automated grading, and closes by exploring discussion,
projects, and other important kinds of work that require more human
attention to assess. Our discussion draws in part on the Canterbury Question
Bank1 [Sand2013], which has entries for various languages and topics in
introductory computing.

12.1 The Classics

As Section 2.1 discussed, multiple choice questions (MCQs) are most effective
when the wrong answers probe for specific misconceptions. In terms of
Bloom’s Taxonomy (Section 6.2), MCQs are usually designed to test recall
and understanding (“What is the capital of Saskatchewan?”), but they can
also require learners to exercise judgment.

1http://web-cat.org/questionbank/

147

http://web-cat.org/questionbank/

A Multiple Choice Question

In what order do operations occur when the computer evaluates the
expression price = addTaxes(cost - discount)?
a) subtraction, function call, assignment
b) function call, subtraction, assignment
c) function call, then assignment and subtraction simultaneously
d) none of the above

The second classic type of programming exercise is code and run (C&R),
in which the learner writes code that produces a specified output. C&R
exercises can be as simple or as complex as the teacher wants, but for in-
class use, they should be brief and have only one or two plausible correct
answers. For novices, it’s often enough to ask them to call a specific function:
experienced teachers often forget how hard it can be to figure out which
parameters go where. For more advanced learners, figuring out which
function to call is more engaging and a better gauge of their understanding.

Code & Run

The variable picture contains a full-color image read from a file. Using
one function, create a black and white version of the image and assign
it to a new variable called monochrome.

Write and run exercises can be combined with MCQs. For example, this
MCQ can only be answered by running the Unix ls command:

Combining MCQ with Code & Run

You are in the directory /home/greg. Which of the following files is not
in that directory?
a) autumn.csv
b) fall.csv
c) spring.csv
d) winter.csv

C&Rs help learners practice the skills they most want to learn, but they
can be hard to assess: learners can find lots of unexpected ways to get the
right answer, and are demoralized if an automatic grading system rejects
their code because it doesn’t match the instructor’s. One way to reduce how
often this occurs is to assess only their output, but that doesn’t give them
feedback on how they are programming. Another is to give them a small
test suite they can run their code against before they submit it (at which
point it is run against a more comprehensive set of tests). Doing this helps
them figure out if they have completely misunderstood the intent of the
exercise before they do anything that they think might cost them grades.

148

Instead of writing code that satisfies some specification, learners can be
asked to write tests to determine whether a piece of code conforms to a
spec. This is a useful skill in its own right, and doing it may give students a
bit more sympathy for how hard their teachers work.

Inverting Code & Run

The function monotonic_sum calculates the sum of each section of a
list of numbers in which the values are strictly increasing. For example,
given the input [1, 3, 3, 4, 5, 1], the output is [4, 12, 1]. Write
and run unit tests to determine which of the following bugs the function
contains:

• Considers every negative number the start of a new sub-sequence.
• Does not include the first value of each sub-sequence in the sub-sum.
• Does not include the last value of each sub-sequence in the sub-sum.
• Only re-starts the sum when values decrease rather than fail to

increase.

Fill in the blanks is a refinement of C&R in which the learner is given
some starter code and has to complete it. (In practice, most C&R exercises
are actually fill in the blanks because the teacher will provide comments to
remind the learners of the steps they should take.) As discussed in Chapter 4,
novices often find filling in the blanks less intimidating than writing all the
code from scratch, and since the teacher has provided most of the answer’s
structure, submissions are much more predictable and therefore easier to
check.

Fill in the Blanks

Fill in the blanks so that the code below prints the string ’hat’.

text = 'all that it is'
slice = text[____:____]
print(slice)

As described in Chapter 4, Parsons Problems also avoid the “blank
screen of terror” problem. The learner is given the lines of code needed to
solve a problem, but has to put them in the right order. Research over the
past few years has shown that Parsons Problems are effective because they
allow learners to concentrate on control flow separately from vocabulary
[Pars2006, Eric2015, Morr2016, Eric2017]. The same research shows that
giving the learner more lines than she needs, or asking her to rearrange
some lines and add a few more, makes this kind of problem significantly
harder [Harm2016]. Tools for building and doing Parsons Problems online

149

exist [Ihan2011], but they can be emulated (albeit somewhat clumsily) by
asking learners to rearrange lines of code in an editor.

Parsons Problem

Rearrange and indent these lines to sum the positive values in a list.
(You will need to add colons in appropriate places as well.)

total = 0
if v > 0
total += v
for v in values

12.2 Tracing

Tracing execution is the inverse of a Parsons Problem: given a few lines of
code, the learner has to trace the order in which those lines are executed.
This is an essential debugging skill, and is a good way to solidify learners’
understanding of loops, conditionals, and the evaluation order of function
and method calls. The easiest way to implement it is to have learners write
out a sequence of labelled steps. Having them choose the correct sequence
from a set (i.e., presenting this as an MCQ) adds cognitive load without
adding value, since they have to do all the work of figuring out the correct
sequence, then search for it in the list of options.

Tracing Execution Order

In what order are the labelled lines in this block of code executed?

A) vals = [-1, 0, 1]
B) inverse_sum = 0

try:
for v in vals:

C) inverse_sum += 1/v
except:

D) pass

Tracing values is similar to tracing execution, but instead of spelling out
the order in which code is executed, the learner has to list the values that one
or more variables take on as the program runs. It can also be implemented
by having learners provide a list of values, but another approach is to give
the learner a table whose columns are labelled with variable names and
whose rows are labelled with line numbers, and asking them to fill in all of
the values taken on by all of the variables.

150

Tracing Values

What values do left and right take on as this program executes?

left = 24
right = 6
while right:

left, right = right, left % right

You can also require learners to trace code backwards, e.g., to figure
out what the input must have been if the code produced a particular result
[Armo2008]. These reverse execution problems require search and deductive
reasoning, but they are particularly useful when the “output” is an error
message, and help learners develop valuable debugging skills.

Reverse Execution

Fill in the missing number in values that caused this function to crash.

values = [[1.0, -0.5], [3.0, 1.5], [2.5, ___]]
runningTotal = 0.0
for (reading, scaling) in values:

runningTotal += reading / scaling

Minimal fix exercises also help learners develop debugging skills. Given
a few lines of code that contain a bug, the learner must either make or
identify the smallest change that will produce the correct output. Making
the change can be done using C&R, while identifying it can be done as a
multiple choice question.

Minimal Fix

This function is supposed to test whether a number lies within a range.
Make one small change so that it actually does so.

def inside(point, lower, higher):
if (point <= lower):

return false
elif (point <= higher):

return false
else:

return true

Theme and variation exercises are similar, but instead of making a change
to fix a bug, the learner is asked to make a small alteration that changes

151

the output in some specific way. Allowed changes can include replacing one
function call with another, changing one variable’s initial value, swapping an
inner and outer loop, changing the order of tests in a chain of conditionals,
or changing the nesting of function calls or the order in which methods are
chained. Again, this kind of exercise gives learners a chance to practice a
useful real-world skill: the fastest way to produce a working program is
often to tweak one that already does something useful.

Theme and Variations

Change the inner loop in the function below so that it fill the upper left
triangle of an image with a specified color.

function fillTriangle(picture, color) is
for x := 1 to picture.width do

for y := 1 to picture.height do
picture[x, y] = color

end
end

end

Refactoring exercises are the complement of theme and variation exercises:
given a working piece of code, the learner has to modify it in some way
without changing its output. For example, the learner could be asked to
replace loops with vectorized expressions, to simplify the condition in a
while loop, etc. The exercise here is that there are often so many ways to
refactor a piece of code that grading requires human intervention.

Refactoring

Write a single list comprehension that has the same effect as this loop.

result = []
for v in values:

if len(v) > threshold:
result.append(v)

12.3 Diagrams

Having students draw concept maps and other diagrams gives insight into
how they’re thinking (Section 3.1), but free-form diagrams take human time
and judgment to assess. Labelling diagrams, on the other hand, is almost as
useful from a pedagogical point of view but much easier to scale.

Rather than having learners create diagrams from scratch, provide them
with a diagram and a set of labels and have them put the latter in the

152

right places on the former. The diagram can be a complex data structure
(“after this code is executed, which variables point to which parts of this
structure?”), the graph that a program produces (“match each of these
pieces of code with the part of the graph it generated”), the code itself
(“match each term to an example of that program element”), or many other
things; the key is that constraining the set of solutions makes this usable in
class and at scale.

Labelling a Diagram

The tree below shows how a small fragment of HTML is represented in
memory. Put the labels 1–10 on the elements of the tree to show the
order in which they are reached in a depth-first traversal.

<p>

...text... ...text... ...text...

...text... ...text...

...text...

Another way to use diagrams for formative assessment is to give learners
the pieces of the diagram and ask them to arrange them correctly. This is a
visual equivalent of a Parsons Problem, and you can provide as much or as
little of a skeleton to help them with placement as you think they’re ready
for. (I have fond memories of trying to place resistors and capacitors in a
circuit diagram in order to get the right voltage at a certain point, and have
often seen teachers give learners a fixed set of Scratch blocks and ask them
to create a particular drawing using only those blocks.)

Matching problems can be thought of as a special case of labelling in
which the “diagram” is a column of text and the labels are taken from the
other column. One-to-one matching gives the learner two lists of equal length
and asks her to pair corresponding items, e.g., “match each piece of code
with the output it produces”.

153

Matching

Match each regular expression operator with what it does.
? start of line
* zero or one occurrences
+ end of line
$ one or more occurrences
^ zero or more occurrences

Many-to-many matching is similar, but the lists aren’t the same length,
so some items may be matched to several others, while others may not be
matched at all. Both kinds require learners to use higher-order thinking
skills, but many-to-many are more difficult because learners can’t do easy
matches first to reduce their search space (i.e., there is a higher cognitive
load.)

Matching problems can be implemented by having learners submit lists
of matching pairs as text (such as “A3, B1, C2”), but that’s clumsy and
error-prone. Having them recognize a set of correct pairs in an MCQ is even
worse, as it’s painfully easy to misread.

Ranking is a special case of matching that is (slightly) more amenable
to answering via lists, since our minds are pretty good at detecting errors
or anomalies in sequences. Give the learner several items and ask them
to order them from fastest to slowest, most robust to most brittle, and so
on. The former tends toward recall (e.g., recognizing the names of various
sorting algorithms and knowing their properties), while the latter tends
more toward reasoning and judgment.

Summarization also requires learners to use higher-order thinking, and
gives them a chance to practice a skill that is very useful when reporting
bugs rather than fixing them. For example, learners can be asked, “Which
sentence best describes how the output of f changes as x varies from 0 to
10?” and then given several options as a multiple choice question.

You can also ask for very short free-form answers to questions in con-
strained domains, e.g., “What is the key feature of a stable sorting algo-
rithm?” We still can’t fully automate checks for these without a frustrating
number of false positives (accepting wrong answers) and false negatives
(rejecting correct ones), but they lend themselves well to peer grading
(Section 5.3).

12.4 Automatic Grading

Automatic program grading tools have been around longer than I’ve been
alive: the earliest published mention dates from 1960 [Holl1960], and the
surveys published in [Douc2005, Ihan2010] mention many specific tools

154

by name. Building such tools is a lot more complex than it might first
seem. How are assignments represented? How are submissions tracked
and reported? Can learners co-operate? How can submissions be executed
safely? [Edwa2014a] is an entire paper devoted to an adaptive scheme
for detecting and managing infinite loops and other non-terminating code
submissions, and that’s just one of the many issues that comes up.

As elsewhere, it’s important to distinguish learner satisfaction from
learning outcomes. [Magu2018] switched informal programming labs to a
weekly machine-evaluated test for a second-year CS course using an auto-
grading tool originally developed for programming competitions. Learners
didn’t like the automated system, but the overall failure rate for the course
was halved, and the number of learners gaining first class honors tripled.
In contrast, [Rubi2014] also began to use an auto-grader designed for
competitions, but saw no significant decrease in their learners’ dropout
rates; once again, learners made some negative comments about the tool,
which the authors attribute to its feedback messages rather than to dislike
of auto-grading.

[Srid2016] took a different approach. They used fuzz testing (i.e.,
randomly-generated test cases) to check whether learner code does the
same thing as a reference implementation supplied by the teacher. In the
first project of a 1400-learner introductory course, fuzz testing caught errors
that were missed by a suite of hand-written test cases for more than 48% of
learners, which clearly demonstrates its value.

[Basu2015] gave learners a suite of solution test cases, but learners had
to unlock each one by answering questions about its expected behavior
before they were allowed to apply it to their proposed solution. For ex-
ample, suppose learners are writing a function to find the largest adjacent
pair of numbers in a list; before being allowed to use the tests associated
with this question, they have to choose the right answer to, “What does
largestPair(4, 3, -1, 5, 3, 3) produce?” (The correct answer is (5,
3).) In a 1300-person university course, the vast majority of learners chose
to validate their understanding of test cases this way before attempting to
solve problems, and then asked fewer questions and expressed less confusion
about assignments.

It’s tempting to use off-the-shelf style checking tools to grade learners’
code. However, [Nutb2016] initially found no correlation between human-
provided marks and style-checker rule violations. Sometimes this was
because learners violated one rule many times (thereby losing more points
than they should have), and other times it was because they submitted the
assignment starter code with few alterations and got more points than they
should have.

[Buff2015] presents a well-informed reflection on the whole idea of
providing automated feedback. Their starting point is that, “Automated
grading systems help learners identify bugs in their code, [but] may inad-

155

vertently discourage learners from thinking critically and testing thoroughly
and instead encourage dependence on the teacher’s tests.” One of the key
issues they identified is that a learner may thoroughly test their code, but
the feature may still not be implemented according to the teacher’s speci-
fications. In this case, the “failure” is not caused by a lack of testing, but
by a misunderstanding of the requirements, and it is unlikely that more
testing will expose the problem. If the auto-grading system doesn’t pro-
vide insightful, actionable feedback, this experience will only frustrate the
learner.

In order to provide that feedback, [Buff2015]’s system identifies which
method or methods of the learner’s code are executed by failing tests, so
that the system can associate failed tests with particular features within the
learner’s submission. The system decides whether specific hints have been
“earned” by seeing whether the learner has tested the associated feature
enough, so learners cannot rely on hints instead of doing tests.

[Keun2016a, Keun2016b] classified the messages produced by 69 auto-
grading tools. They found that these often do not give feedback on how to fix
problems and take the next step. They also found that most teachers cannot
easily adapt most of the tools to their needs; like many workflow tools,
they tend to enforce their creators’ unrecognized assumptions about how
institutions work. Their work is ongoing, and their detailed classification
scheme is a useful shopping list when looking at tools of this kind.

[Srid2016] discussed strategies for sharing feedback with learners when
automatically testing their code. The first is to provide the expected output
for the tests—but then learners hard-code output for those inputs (because
anything that can be gamed, will be). An alternative is to report the pass/fail
results for the learners’ code, but only supply the actual inputs and outputs
of the tests after the submission date. This can be frustrating, because it
tells learners they are wrong, but not why.

A third option is to use a technique called hashing to generate a value
that depends on the output, but doesn’t reveal it. If the user produces exactly
the same output, its hash will be the same as the hash of the correct output,
which will unlock the solution, but it is impossible to work backward from
the hash to figure out what the output is supposed to be. Hashing is used to
create digital signatures for documents, and requires a bit more work and
explanation to set up, but strikes a good balance between revealing answers
prematurely and not revealing them when it would help.

12.5 Higher-Level Thinking

Many other kinds of programming exercises are hard for teachers to assess in
a class with more than few dozen learners, and equally hard for automated
platforms to assess at all. Larger programming projects, or projects in

156

which learners set their own goals, are (hopefully) what classes are building
toward. Free-form discussion or twitch coding (Section 8.4) is also valuable,
but also doesn’t scale.

Code review, on the other hand, is hard to grade automatically in the
general case, but can be tackled if learners are given a rubric (e.g., a list
of faults to look for) and asked to match particular comments against
particular lines of code. For example, the learner can be told that there
are two indentation errors and one bad variable name, and asked to point
them out; if she is more advanced, she could be given half a dozen kinds of
remarks she could make about the code without guidance as to how many
of each she should find.

[Steg2016b] is a good starting point for a code style rubric, while
[Luxt2009] looks at peer review in programming classes more generally.
If you are going to have students do reviews, use calibrated peer review
(Section 5.3) so that they have models of what good feedback should look
like.

Code Review

Using the rubric provided, mark each line of the code below.

01) def addem(f):
02) x1 = open(f).readlines()
03) x2 = [x for x in x1 if x.strip()]
04) changes = 0
05) for v in x2:
06) print('total', total)
07) tot = tot + int(v)
08) print('total')

1. poor variable name
2. unused variable
3. use of undefined variable
4. missing return value

12.6 Exercises

Code and Run (pairs/10 minutes)

Create a short C&R exercise; trade with a partner, and see how long it takes
each of you to understand and do the other’s exercise. Were there any
ambiguities or misunderstandings in the exercise description?

157

Inverting Code and Run (small groups/15 minutes)

Form groups of 4–6 people. Have each member of the group create an
inverted C&R exercise that requires people to figure out what input produces
a particular output. Pick two at random, and see how many different inputs
the group can find that satisfy the requirements.

Tracing Values (pairs/10 minutes)

Write a short program (10–15 lines); trade with a partner, and trace how
the variables in the program change value over time. What differences are
there in how you and your partner wrote down your traces?

Refactoring (small groups/15 minutes)

Form groups of 3–4 people. Have each person select a short piece of code
(10–30 lines long) that they have written that isn’t as tidy as it could
be. Choose one at random, and have everyone in the group tidy it up
independently. How do your cleaned-up versions differ? How well or how
poorly would you be able to accommodate all of these variations if marking
automatically or in a large class?

Labelling a Diagram (pairs/10 minutes)

Draw a diagram showing something that you have explained recently: how
browsers fetch data from servers, the relationship between objects and
classes, or how data frames are indexed in R. Put the labels on the side, and
ask your partner to place them.

Pencil-and-Paper Puzzles (whole class/15 minutes)

[Butl2017] describes a set of pencil-and-paper puzzles that can be turned
into introductory programming assignments, and found that these assign-
ments are enjoyed by students and encourage meta-cognition. Think of a
simple pencil-and-paper puzzle or game you played as a child, and describe
how you would turn it into a programming exercise.

Counting Failures (pairs/15 minutes)

Any useful estimate of how much time an exercise needs must take into
account how frequent failures are and how much time is lost to them.
For example, editing text files seems like a simple task, but what about
finding those files? Most GUI editors save things to the user’s desktop or
home directory; if the files used in a course are stored somewhere else, a
substantial fraction won’t be able to navigate to the right directory without

158

help. (If this seems like a small problem to you, please revisit the discussion
of expert blind spot in Chapter 3.)

Working with a partner, make a list of “simple” things you have seen
go wrong in exercises you have used or taken. How often do they come
up? How long do they take learners to fix on their own, or with help? How
much time do you currently budget in class to deal with them?

159

Part IV

Organizing

161

13 Building Community

After reading this chapter, you will be able to. . .

• Explain what situated learning is and identify its key elements.
• Explain how to decide whether to try to create a new community or

join an existing effort.
• Outline a three-step plan for recruiting, retaining, and retiring

volunteers and other organization participants.
• Explain the difference between a service board and a governance

board, and judge which kind an organization has.

Many well-intentioned people want the world to be a better place, but
don’t actually want anything important to change. A lot of grassroots efforts
to teach programming fall into this category: they want to teach children
and adults how to program so that they can get good jobs, rather than
empower them to change the system that has shut them (and people like
them) out of those jobs in the past.

If you are going to build a community, the first and most important thing
you have to decide is what you want: to help people succeed in the world we
have, or to give them a way to make a better one. Either way, you have to
accept that one person can only do so much. Just as we learn best together,
we teach best when we are teaching with other people, and the best way to
achieve that is to build a community.

And as Anu Partanen pointed out1, sometimes you need to fix several
things in order to fix one. Finland’s teachers aren’t successful in isolation:
they are able to achieve outstanding results because their country’s citizens
truly value equality of opportunity. People (and countries) that try to adopt
their teaching methods without ensuring that children (and parents) are
well nourished, safe, and treated fairly by the courts will have a more
difficult time. This doesn’t mean you have to fix all of society’s ills in order
to teach programming, but it does mean that you have to understand and be

1https://www.theatlantic.com/national/archive/2011/12/what-americans-keep-ignoring-
about-finlands-school-success/250564/

163

https://www.theatlantic.com/national/archive/2011/12/what-americans-keep-ignoring-about-finlands-school-success/250564/
https://www.theatlantic.com/national/archive/2011/12/what-americans-keep-ignoring-about-finlands-school-success/250564/

involved in what happens to your learners outside of your class if you want
that class to work.

A framework in which to think about educational communities is sit-
uated learning, which focuses on how legitimate peripheral partici-
pation leads to people becoming members of a community of practice
[Weng2015]. Unpacking those terms, a community of practice is a group
of people bound together by interest in some activity, such as knitting or
particle physics. Legitimate peripheral participation means doing simple,
low-risk tasks that community nevertheless recognizes as valid contributions:
making your first scarf, stuffing envelopes during an election campaign, or
proof-reading documentation for open source software.

Situated learning focuses on the transition from being a newcomer to
being accepted as a peer by those who are already community members.
This typically means starting with simplified tasks and tools, then doing
similar tasks with more complex tools, and finally tackling the exercises of
advanced practitioners. For example, children learning music may start by
playing nursery rhymes on a recorder or ukulele, then play other simple
songs on a trumpet or saxophone in a band, and finally start exploring
their own musical tastes. Healthy communities of practice understand and
support these progressions, and recognize that each step is meant to give
people a ramp rather than a cliff. Some of the ways they do this include:

Problem solving: “I’m stuck—Can we work on this design and brainstorm
some ideas?”

Requests for information: “Where can I find the code to connect to the
server?”

Seeking experience: “Has anyone dealt with a customer in this situation?”
Reusing assets: “I have a proposal for an event website that I wrote for a

client last year you can use as a starting point.”
Coordination and synergy: “Can we combine our purchases of web host-

ing to get a discount?”
Building an argument: “How do people in other companies do this?

Armed with this information it will be easier to convince my CEO to make
some changes.”

Growing confidence: “Before I do it, I’ll run it through my community first
to see what they think.”

Discussing developments: “What do you think of the new work tracking
system? Does it really help?”

Documenting projects: “We have faced this problem five times now. Let
us write it down once and for all.”

Visits: “Can we come and see your after-school program? We need to
establish one in our city.”

Mapping knowledge and identifying gaps: “Who knows what, and what
are we missing? What other groups should we connect with?”

164

Whatever the domain, situated learning emphasizes that learning is a
social activity. In order to be effective and sustainable, teaching therefore
needs to be rooted in a community; if one doesn’t exist, you need to build
one. There are at least four types2:

Community of action: people focused on a shared goal, such as getting
someone elected.

Community of concern: members are brought together by a shared exer-
cise, such as dealing with depression.

Community of interest: focused on a shared love of something like
backgammon or knitting.

Community of place: of people who happen to live or work side by side.

Most real communities are mixes of these, such as people in Toronto
who like teaching tech; what matters is that you pick something and stick
with it.

13.1 Learn, Then Do

The first step in building a community is to decide if you really need to,
or whether you would be more effective joining an existing organization.
Thousands of groups are already teaching people tech skills, from the 4-H
Club3 and literacy programs4 to get-into-coding non-profits like Black Girls
Code5 and Bridge6. Joining an existing group will give you a head start on
teaching, an immediate set of colleagues, and a chance to learn more about
how to run things; hopefully, learning those skills will be more important
than being able to say that you’re the founder or leader of something new.

Whether you join an existing group or set up one of your own, you owe
it to yourself and everyone who’s going to work with you to find out what’s
been done before. People have been writing about grassroots organizing
for decades; [Alin1989] is probably the best-known work on the subject,
while [Brow2007, Midw2010] are practical manuals rooted in decades of
practice. If you want to read more deeply, [Adam1975] is a history of
the Highlander Folk School, whose approach has been emulated by many
successful groups, while [Spal2014] is a guide to teaching adults written by
someone with deep personal roots in organizing, and NonprofitReady.org7

offers free professional development training.

2https://www.feverbee.com/types-of-community-and-activity-within-the-community/
3http://www.4-h-canada.ca/
4https://www.frontiercollege.ca/
5http://www.blackgirlscode.com/
6http://bridgeschool.io/
7https://www.nonprofitready.org/

165

https://www.feverbee.com/types-of-community-and-activity-within-the-community/
http://www.4-h-canada.ca/
https://www.frontiercollege.ca/
http://www.blackgirlscode.com/
http://bridgeschool.io/
https://www.nonprofitready.org/

13.2 Three Steps

Everyone who gets involved with your organization, including you, goes
through three phases: recruitment, retention, and retirement (from the
organization). You don’t need to worry about this cycle when you’re just
getting started, but it is worth thinking about as soon as you have more than
a couple of non-founders involved.

The first step is recruiting volunteers. Your marketing should help you
with this by making your organization findable, and by making its mission
and its value to volunteers clear to people who might want to get involved.
Share stories that exemplify the kind of help you want as well as stories
about the people you’re helping, and make it clear that there are many ways
to get involved. (We discuss this in more detail in the next section.)

Your best source of new recruits is your own classes: “see one, do one,
teach one” has worked well for volunteer organizations for as long as there
have been volunteer organizations. Make sure that every class or other
encounter ends with two sentences explaining how people can help, and
that help is welcome. People who come to you this way will know what
you do, and will have recent experience of being on the receiving end of
what you offer that they can draw on, which helps your organization avoid
collective expert blind spot.

Start Small

As Ben Franklina observed, a person who has performed a favor for
someone is more likely to do another favor for that person than they
would be if they had received a favor from that person. Asking people to
do something small for you is therefore a good step toward getting them
to do something larger. One natural way to do this when teaching is to
ask people to submit fixes for your lesson materials for typos or unclear
wording, or to suggest new exercises or examples. If your materials are
written in a maintainable way (Section 6.3), this gives them a chance
to practice some useful skills, and gives you an opportunity to start a
conversation that might lead to a new recruit.
ahttps://en.wikipedia.org/wiki/Ben_Franklin_effect

Recruiting doesn’t end when someone first shows up: if you don’t follow
through, people will come out once or twice, then decide that what you’re
doing isn’t for them and disappear. One thing you can do to get newcomers
over this initial hump is to have them take part in group activities before
they do anything on their own, both so that they get a sense of how your
organization does things, and so that they build social ties that will keep
them involved.

166

https://en.wikipedia.org/wiki/Ben_Franklin_effect

Another thing you can do is give newcomers a mentor, and make sure the
mentors actually do some proactive mentoring. The most important things
a mentor can do are make introductions and explain the unwritten rules, so
make it clear to mentors that these are their primary responsibilities, and
they are to report back to you every few weeks to tell you what they’ve
done.

The second part of the volunteer lifecycle is retention, which is a large
enough topic to deserve a long discussion in Section 13.3. The third and
final part is retirement. Sooner or later, everyone moves on (including you).
When this happens:

Ask people to be explicit about their departure so that everyone knows
they’ve actually left.

Make sure they don’t feel embarrassed or ashamed about leaving.
Give them an opportunity to pass on their knowledge. For example,

you can ask them to mentor someone for a few weeks as their last
contribution, or to be interviewed by someone who’s staying with the
organization to collect any stories that are worth re-telling.

Make sure they hand over the keys. It’s awkward to discover six months
after someone has left that they’re the only person who knows how to
book a playing field for the annual softball game.

Follow up 2–3 months after they leave to see if they have any further
thoughts about what worked and what didn’t while they were with you,
or any advice to offer that they either didn’t think to give or were uncom-
fortable giving on their way out the door.

Thank them, both when they leave and the next time your group gets
together.

13.3 Retention

Saul Alinsky once said, “If your people aren’t having a ball doing it, there is
something very wrong.” [Alin1989] Community members shouldn’t expect
to enjoy every moment of their work with your organization, but if they
don’t enjoy any of it, they won’t stay.

Enjoyment doesn’t necessarily mean having an annual party: people
may enjoy cooking, coaching, or just working quietly beside others. There
are several things every organization should do to ensure that people are
getting something they value out of their work:

Ask people what they want rather than guessing. Just as you are not
your learners (Section 6.1), you are probably different from other
members of your organization. Ask people what they want to do, what
they’re comfortable doing (which may not be the same thing), what
constraints there are on their time, and so on. They might start by saying,
“I don’t know—anything!” but even a short conversation will probably

167

uncover the fact that they like interacting with people but would rather
not be managing the group’s finances, or vice versa.

Provide many ways to contribute. The more ways there are for people to
help, the more people will be able to help. Someone who doesn’t like
standing in front of an audience may be able to maintain your organiza-
tion’s website or handle its accounts; someone who doesn’t know how
to do anything else may be able to proof-read lessons, and so on. The
more kinds of tasks you do yourself, the fewer opportunities there are for
others to get involved.

Recognize contributions. Everyone likes to be appreciated, so commu-
nities should acknowledge their members’ contributions both publicly
and privately by mentioning them in presentations, putting them on the
website, and so on.

Make space. Micromanaging or trying to control everything centrally
means people won’t feel they have the autonomy to act, which will
probably cause them to drift away. In particular, if you’re too engaged
or too quick on the reply button, people have less opportunity to grow
as members and to create horizontal collaborations. As a result, the
community will continue to be focused around one or two individuals,
rather than a highly-connected network in which others feel comfortable
participating.

Another way to make participation rewarding is to provide training.
Organizations require committees, meetings, budgets, grant proposals, and
dispute resolution; most people are never taught how to do any of this, any
more than they are taught how to teach, but training people to do these
things helps your organization run more smoothly, and the opportunity
to gain transferable skills is a powerful reason for people to get and stay
involved. If you are going to do this, don’t try to provide the training yourself
(unless it’s what you specialize in). Many civic and community groups have
programs of this kind, and you can probably make a deal with one of them.

Other groups may be useful in other ways as well, and you may be
useful to them—if not immediately, then tomorrow or next year. You should
therefore set aside an hour or two every month to find allies and maintain
your relationships with them. One way to do this is to ask them for advice:
how do they think you ought to raise awareness of what you’re doing?
Where have they found space to run classes? What needs do they think
aren’t being met, and would you be able to meet them (either on your own,
or in partnership with them)? Any group that has been around for a few
years will have useful advice; they will also be flattered to be asked, and
will know who you are the next time you call.

168

Government Matters

It’s fashionable in tech circles to disparage government institutions as
slow-moving dinosaurs, but in my experience they are no worse than
companies of similar size. Your local school board, library, and your
city councillor’s office may be able to offer space, funding, publicity,
connections with other groups that you may not have met yet, help
with red tape, and a host of other useful things.

Soup, Then Hymns

Manifestos are fun to write, but most people join a volunteer community
to help and be helped rather than to argue over the wording of a grand
vision statement. (Most people who prefer the latter are only interested
in arguing. . .) To be effective you should therefore focus on things that
are immediately useful, e.g., on what people can create that will be
used by other community members right away. Once your organization
shows that it can actually achieve small things, people will be more
confident that it’s worth investing in bigger ones. That’s the time to
worry about manifestos, since that’s the point at which it’s important
to define values that will guide your growth and operations.

One important special case of making things rewarding is to pay people.
Volunteers can do a lot, but eventually tasks like system administration and
accounting need full-time paid staff. When this time comes, you should
either pay people nothing or pay them a proper wage, but not do anything
in between. If you pay them nothing, their actual reward for their work is
the satisfaction of doing good. If you pay them a token amount, you take
that away without giving them the satisfaction of earning a living.

Impostor Syndrome

Impostor syndrome thrives in communities with arbitrary, unnecessary
standards, where harsh criticism is the norm, and where secrecy surrounds
the actual process of getting work done, so the Ada Initiative has guidelines8

for communities to go with those given in Section 10.2for individuals:

Encourage people. This is as simple as it is effective.
Discourage hostility and bickering. Public, hostile, personal arguments

are a natural breeding ground for impostor syndrome.
Eliminate hidden barriers to participation. Be explicit about welcoming

new students and colleagues, and thoroughly document how someone

8https://www.usenix.org/blog/impostor-syndrome-proof-yourself-and-your-community

169

https://www.usenix.org/blog/impostor-syndrome-proof-yourself-and-your-community

can participate in projects and events in your research group and at your
institution.

As a leader, show your own uncertainties and demonstrate your own
learning process. When people see leaders whom they respect struggling
or admitting they didn’t already know everything when they started,
having realistic opinions of their own work becomes easier.

Reward and encourage people for mentoring newcomers. Officially en-
shrine mentoring as an important criterion in your career advancement
process.

Don’t make it personal when someone’s work isn’t up to snuff. When
enforcing necessary quality standards, don’t make the issue about the
person. They aren’t wrong or stupid or a waste of space; they’ve simply
done one piece of work that didn’t meet your expectations.

13.4 Governance

As [Free1972] pointed out, every organization has a power structure: the
only question is whether it’s formal and accountable, or informal and un-
accountable. Make yours one of the first kind: write and publish the rules
governing everything from who’s allowed to use the name and logo to who
gets to decide whether people are allowed to charge money to teach with
whatever materials your group has worked up.

Organizations can govern themselves in many different ways, and a
full discussion of the options is outside the scope of this book. For-profit
corporations and incorporated non-profits the two most popular models; the
mechanics vary from jurisdiction to jurisdiction, so you should seek advice
locally before doing anything. (This is one of the times when having ties
with local government or other like-minded organizations pays off.)

The model I prefer is that of a commons, which is “something managed
jointly by a community according to rules they themselves have evolved
and adopted”. As [Boll2014] emphasizes, all three parts of that definition
are essential: a commons isn’t just a shared pasture, but also includes the
community that shares it and the rules they use to do so.

Most resources, throughout most of human history, have been commons:
it is only in the last few hundred years that impersonal markets have pushed
them to the margins. In order to do so, free-market advocates have had
to convince us we’re something we’re not (dispassionate calculators of
individual advantage) and erase or devalue local knowledge and custom
with tragic consequences for us individually and collectively.

Since society has difficulty recognizing commons organizations, and
since most of the people you will want to recruit don’t have experience with
them, you will probably wind up having some sort of board, a director, and
other staff. Broadly speaking, your organization can have either a service
board, whose members also take on other roles in the organization, or a

170

governance board whose primary responsibility is to hire, monitor, and if
need be fire the director. Board members can be elected by the community
or appointed; in either case, it’s important to prioritize competence over
passion (the latter being more important for the rank and file), and to try to
recruit for particular skills such as accounting, marketing, and so on.

Don’t worry about drafting a constitution when you first get started: it
will only result in endless wrangling about what we’re going to do rather
than formalization of what you’re already doing. When the time does
come to formalize your rules, though, make your organization a democracy:
sooner or later (usually sooner), every appointed board turns into a mutual
agreement society and loses sight of what the community it’s meant to serve
actually needs. Giving the community power is messy, but is the only way
invented so far to ensure that an organization continues to meet people’s
actual needs.

13.5 Final Thoughts

As [Pign2016] discusses, burnout is a chronic risk in any community activity.
If you don’t take care of yourself, you won’t be able to take care of your
community.

Every organization eventually needs fresh ideas and fresh leadership.
When that time comes, train your successors and then move on. They will
undoubtedly do things you wouldn’t have, but the same is true of every
generation. Few things in life are as satisfying as watching something you
helped build take on a life of its own. Celebrate that—you won’t have any
trouble finding something else to keep you busy.

13.6 Exercises

Several of these exercises are taken from [Brow2007], which is an excep-
tionally useful book on building community organizations.

What Kind of Community? (individual/15 minutes)

Re-read the discussion in the introduction of types of communities and
decide which type or types your group is, or aspires to be.

People You May Meet (small groups/30 minutes)

As an organizer, part of your job is sometimes to help people find a way
to contribute despite themselves. In small groups, pick three of the people
below and discuss how you would help them become a better contributor to
your organization.

171

Anna knows more about every subject than everyone else put together—at
least, she thinks she does. No matter what you say, she’ll correct you; no
matter what you know, she knows better.

Catherine has so little confidence in her own ability that she won’t make
any decision, no matter how small, until she has checked with someone
else.

Frank believes that knowledge is power, and enjoys knowing things that
other people don’t. He can make things work, but when asked how he
did it, he’ll grin and say, “Oh, I’m sure you can figure it out.”

Hediyeh is quiet. She never speaks up in meetings, even when she knows
that what other people are saying is wrong. She might contribute to the
mailing list, but she’s very sensitive to criticism, and will always back
down rather than defending her point of view.

Kenny has discovered that most people would rather shoulder his share of
the work than complain about him, and he takes advantage of it at every
turn. The frustrating thing is that he’s so damn plausible when someone
finally does confront him. “There have been mistakes on all sides,” he
says, or, “Well, I think you’re nit-picking.”

Melissa means well, but somehow something always comes up, and her
tasks are never finished until the last possible moment. Of course, that
means that everyone who is depending on her can’t do their work until
after the last possible moment. . .

Raj is rude. “It’s just the way I talk,” he says, “If you can’t hack it, maybe
you should find another team.” His favorite phrase is, “That’s stupid,” and
he uses obscenity in every second sentence.

Values (small groups/45 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. What are the values your organization expresses?
2. Are these the values you want the organization to express?
3. If not, what values would you like it to express?
4. What are the specific behaviors that demonstrate those values?
5. What are some key behaviors that would demonstrate the values you

would like for your group?
6. What are the behaviors that would demonstrate the opposite of those

values?
7. What are some key behaviors that would demonstrate the opposite of

the values you want to have?

172

Meeting Procedures (small groups/30 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. How are your meetings run?
2. Is this how you want your meetings to be run?
3. Are the rules for running meetings explicit or just assumed?
4. Are these the rules you want?
5. Who is eligible to vote/make decisions?
6. Is this who you want to be vested with decision-making authority?
7. Do you use majority rule, make decisions by consensus, or use some

other method?
8. Is this the way you want to make decisions?
9. How do people in a meeting know when a decision has been made?

10. How do people who weren’t at a meeting know what decisions were
made?

11. Is this working for your group?

Size (small groups/20 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. How big is your group?
2. Is this the size you want for your organization?
3. If not, what size would you like it to be?
4. Do you have any limits on the size of membership?
5. Would you benefit from setting such a limit?

Staffing (small groups/30 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. Do you have paid staff in your organization?
2. Or is it all-volunteer?
3. Should you have paid staff?
4. Do you want/need more or less staff?
5. What do you call the staff (e.g., organizer, director, coordinator, etc.)?
6. What do the staff members do?
7. Are these the primary roles and functions that you want the staff to be

filling?
8. Who supervises your staff?
9. Is this the supervision process and responsibility chain that you want

for your group?
10. What is your staff paid?

173

11. Is this the right salary to get the needed work done and to fit within
your resource constraints?

12. What benefits does your group provide to its staff (health, dental,
pension, short and long-term disability, vacation, comp time, etc.)?

13. Are these the benefits that you want to give?

Money (small groups/30 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. Who pays for what?
2. Is this who you want to be paying?
3. Where do you get your money?
4. Is this how you want to get your money?
5. If not, do you have any plans to get it another way?
6. If so, what are they?
7. Who is following up to make sure that happens?
8. How much money do you have?
9. How much do you need?

10. What do you spend most of your money on?
11. Is this how you want to spend your money?

Becoming a Member (small groups/45 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. How does someone join?
2. Does this process work for your organization?
3. What are the membership criteria?
4. Are these the membership criteria you want?
5. Are people required to agree to any rules of behavior upon joining?
6. Are these the rules for behavior you want?
7. Are there membership dues?

Borrowing Ideas (whole class/15 minutes)

Many of our ideas about how to build a community have been shaped by our
experience of working in open source software development. [Foge2005]
(which is available online9) is a good guide to what has and hasn’t worked
for those communities, and the Open Source Guides site10 has a wealth of
useful information as well. Choose one section of the latter, such as “Finding
Users for Your Project” or “Leadership and Governance”, read it through,
and give a two-minute presentation to the group of one idea from it that
you found useful or that you strongly disagreed with.
9http://producingoss.com/
10https://opensource.guide/

174

http://producingoss.com/
https://opensource.guide/

Who Are You? (small groups/20 minutes)

The National Oceanic and Atmospheric Administration (NOAA) has pub-
lished a short, amusing, and above all useful guide to dealing with disruptive
behaviors11. It categorizes those behaviors under labels like “talkative”, “in-
decisive”, and “shy”, and outlines strategies for handling each. In groups of
3–6, read the guide and decide which of these descriptions best fits you. Do
you think the strategies described for handling people like you are effective?
Are other strategies equally or more effective?

11https://coast.noaa.gov/ddb/story_html5.html

175

https://coast.noaa.gov/ddb/story_html5.html

14 Marketing

After reading this chapter, you will be able to. . .

• Explain what marketing actually is.
• Explain the value of what they are offering to different potential

stakeholders.
• State what a brand is and what their organization’s is.

It’s hard to get people with academic or technical backgrounds to take
marketing seriously, not least because it’s perceived as being about spin and
misdirection. In reality, it is the craft of seeing things from other people’s
perspective, understanding their wants and needs, and finding ways to meet
them. This should sound familiar: many of the techniques introduced in
Chapter 6 do exactly this for lessons. This chapter will look at how to apply
similar ideas to the larger problem of getting people to understand and
support what you’re doing.

14.1 What Are You Offering to Whom?

The first step is to figure out what you are offering to whom, i.e., what
actually brings in the volunteers, funding, and other support you need to
keep going. As [Kuch2011] points out, the answer is often counter-intuitive.
For example, most scientists think their papers are their product, but it’s
actually their grant proposals, because those are what brings in money. Their
papers are the advertising that persuades people to fund those proposals,
just as albums are now what persuades people to buy musicians’ concert
tickets and t-shirts.

You may not be a scientist, so suppose instead that your group is offer-
ing weekend programming workshops to people who are re-entering the
workforce after taking several years out to look after young children. If your
learners are paying enough for your workshops to cover your costs, then the
learners are your customers and the workshops are the product. If, on the
other hand, the workshops are free, or the learners are only paying a token

177

amount (to cut the no-show rate), then your actual product may be some
mix of:

• your grant proposals,
• the alumni of your workshops that the companies sponsoring you would

like to hire,
• the half page summary of your work in the mayor’s annual report to city

council that shows how she’s supporting the local tech sector, or
• the personal satisfaction that your volunteer instructors get from teach-

ing.

As with the lesson design process in Chapter 6, you should try to create
personas to describe people who might be interested in what you’re doing
and figure out which of their needs your program will meet. You should
also write a set of elevator pitches, each aimed at a different potential
stakeholder. A widely-used template for these pitches looks like this:

1. For target audience
2. who dissatisfaction with what’s currently available
3. our category
4. provide key benefit.
5. Unlike alternatives
6. our program key distinguishing feature.

Continuing with the weekend workshop example, we could use this pitch
for participants:

For people re-entering the workforce after taking time out to raise chil-
dren who still have regular childcare responsibilities, our introductory
programming workshops provide weekend classes with on-site childcare.
Unlike online classes, our program gives participants a chance to meet
people who are at the same stage of life.

but this one for companies that we want to donate staff time for teaching:

For a company that wants to recruit entry-level software developers
that is struggling to find mature, diverse candidates our introductory
programming workshops provide a pool of potential recruits in their
thirties that includes large numbers of people from underrepresented
groups. Unlike college recruiting fairs, our program connects companies
directly with a diverse audience.

If you don’t know why different potential stakeholders might be inter-
ested in what you’re doing, ask them. If you do know, ask them anyway:
answers can change over time, and it’s a good way to discover things that
you might have missed.

Once you have written these pitches, you should use them to drive what
you put on your organization’s web site and in other publicity material, since

178

it will help people figure out as quickly as possible whether you and they
have something to talk about. (You probably shouldn’t copy them verbatim,
since many people in tech have seen this template so often that their eyes
will glaze over if they encounter it again.)

As you are writing these pitches, remember that people are not just
economic animals. A sense of accomplishment, control over their own lives,
and being part of a community motivates them just as much as money.
People may volunteer to teach with you because their friends are doing it;
similarly, a company may say that they’re sponsoring classes for economically
disadvantaged high school students because they want a larger pool of
potential employees further down the road, but the CEO might actually be
doing it simply because it’s the right thing to do.

14.2 Branding and Positioning

A brand is someone’s first reaction to a mention of a product; if the reaction
is “what’s that?”, you don’t have a brand yet. Branding is important because
people aren’t going to help with something they don’t know about or don’t
care about.

Most discussion of branding today focuses on ways to build awareness
online. Mailing lists, blogs, and Twitter all give you ways to reach people,
but as the volume of (mis)information steadily increases, the attention
people pay to each interruption decreases. As this happens, positioning
becomes more important. Sometimes called “differentiation”, it is what sets
your offering apart from others, i.e., it’s the “unlike” section of your elevator
pitches. When you reach out to people who are already familiar with your
field, you should emphasize your positioning, since it’s what will catch their
attention.

There are other things you can do to help build your brand. One is
to use props: a robot car that one of your students made from scraps she
found around the house, the website another student made for his parents’
retirement home, or anything else that makes what you’re doing seem
real. Another is to make a short video—no more than a few minutes long—
showcasing the backgrounds and accomplishments of your students. The
aim of both is to tell a story: while people always ask for data, stories are
what they believe.

Notice, though that these examples assume people have access to the
money, materials, and/or technology needed to create these products. Many
don’t—in fact, those serving economically disadvantaged groups almost
certainly don’t. As Rosario Robinson says, “Free works for those that can
afford free.” In those situations, stories become even more important,
because they can be shared and re-shared without limit.

179

Foundational Myths

One of the most compelling stories a person or organization can tell
is why and how they got started. Are you teaching what you wish
someone had taught you but didn’t? Was there one particular person
you wanted to help, and that opened the floodgates? If there isn’t
a section on your website starting, “Once upon a time,” think about
adding one.

Whatever else you do, make your organization findable in online
searches: [DiSa2014b] discovered that the search terms parents were likely
to use for out-of-school computing classes didn’t actually find those classes.
There’s a lot of folklore about how to make things findable under the label
“SEO” (for “search engine optimization”); given Google’s near-monopoly
powers and lack of transparency, most of it boils down to trying to stay one
step ahead of algorithms designed to prevent people from gaming rankings.

Unless you’re very well funded, the best you can do is to search for
yourself and your organization on a regular basis and see what comes up,
then read these guidelines from Moz1 and do what you can to improve your
site. Keep this cartoon2 in mind: people don’t (initially) want to know about
your org chart or get a virtual tour of your site; they want your address,
parking information, and above all, some idea of what you teach, when you
teach it, how to get in touch, and how it’s going to change their life.

Offline findability is equally important for new organizations. Many
of the people you hope to reach might not be online as often as you, and
some won’t be online at all. Notice boards in schools, local libraries, drop-in
centers, and grocery stores are still an effective way to reach them.

Build Alliances

As discussed in Chapter 13, building alliances with other groups that
are doing things related to what you’re doing pays off in many ways.
One of those is referrals: if someone approaches you for help, but
would be better served by some other organization, take a moment to
make an introduction. If you’ve done this several times, add something
to your website to help the next person find what they need. The
organizations you are helping will soon start to help you in return.

1https://moz.com/learn/seo/on-page-factors
2https://xkcd.com/773/

180

https://moz.com/learn/seo/on-page-factors
https://xkcd.com/773/

14.3 The Art of the Cold Call

Building a web site and hoping that people find it is one thing; calling
people up or knocking on their door without any sort of prior introduction
is another. As with standing up and teaching, though, it’s a craft that can be
learned like any other, and there are a few simple rules you can follow:

Establish a point of connection such as “I was speaking to X” or “You
attended bootcamp Y”. This must be specific: spammers and headhunters
have trained us all to ignore anything that starts, “I recently read your
website”.

Create a slight sense of urgency by saying something like, “We’re booking
workshops right now.” Be cautious with this, though; as with the previous
recommendation, the web’s race to the bottom has conditioned people to
discount anything that sounds like a hustle.

Explain how you are going to help make their lives better. A pitch like
“Your students will be able to do their math homework much faster if you
let us tutor them” is a good attention-getter.

Be specific about what you are offering. “Our usual two-day curriculum
includes. . . ” helpers listeners figure out right away whether a conversa-
tion is worth pursuing.

Make yourself credible by mentioning your backers, your size, how long
you’ve been around, or your instructors’s backgrounds.

Tell them what your terms are. Do you charge money? Do they need to
cover instructors’ travel costs? Can they reserve seats for their own staff?

Write a good subject line. Keep it short, avoid ALL CAPS, words like “sale”
or “free” (which increase the odds that your message will be treated as
spam), and never! use! exclamation! marks!

Keep it short, since the purest form of respect is to treat other people as if
their time was as valuable as your own.

The email template below puts all of these points in action. It has worked
pretty well: we found that about half of emails were answered, about half
of those wanted to talk more, and about half of those led to workshops,
which means that 10–15% of targeted emails turned into workshops. That’s
much better than the 2–3% response rate most organizations expect with
cold calls, but can still be pretty demoralizing if you’re not used to it.

Mail Out of the Blue

Hi NAME,
I hope you don’t mind mail out of the blue, but I wanted to follow

up on our conversation at the tech showcase last week to see if you
would be interested having us run an instructor training workshop -
we’re scheduling the next batch over the next couple of weeks.

181

This one-day class will introduce your volunteer teachers to a hand-
ful of key practices that are grounded in education research and proven
useful in practice. The class has been delivered dozens of times on
four continents, and will be hands-on: short lessons will alternate with
individual and group practical exercises, including practice teaching
sessions.

If this sounds interesting, please give me a shout - I’d welcome a
chance to talk ways and means.
Thanks,
NAME

14.4 A Final Thought

As [Kuch2011] says, if you can’t be first in a category, create a new category
that you can be first in; if you can’t do that, join an existing group or think
about doing something else entirely. This isn’t defeatist: if someone else is
already doing what you’re doing better than you, there are probably lots of
other equally useful things you could be doing instead.

14.5 Exercises

Write an Elevator Pitch for a City Councillor (individual/10
minutes)

This chapter described an organization that offers weekend programming
workshops for people re-entering the workforce after taking a break to
raise children. Write an elevator pitch for that organization aimed at a city
councillor whose support the organization needs.

Write Elevator Pitches for Your Organization (individual/30
minutes)

Identify two groups of people your organization needs support from, and
write an elevator pitch aimed at each one.

Email Subjects (pairs/10 minutes)

Write the subject lines (and only the subject lines) for three email messages:
one announcing a new course, one announcing a new sponsor, and one
announcing a change in project leadership. Compare your subject lines to
a partner’s and see if you can merge the best features of each while also
shortening them.

182

Identify Causes of Passive Resistance (small groups/30
minutes)

People who don’t want change will sometimes say so out loud, but will also
often use various forms of passive resistance, such as just not getting around
to it over and over again, or raising one possible problem after another to
make the change seem riskier and more expensive than it’s actually likely to
be. Working in small groups, list three or four reasons why people might
not want your teaching initiative to go ahead, and explain what you can do
with the time and resources you have to counteract each.

Why Learn to Program? (individual/15 minutes)

Revisit the “Why Learn to Program?” exercise in Section 1.7. Where do your
reasons for teaching and your learners’ reasons for learning align? Where
are they not aligned? How does that affect your marketing?

Appealing to Your Learners (think-pair-share/15 minutes)

Adult learners are different from children and teens: in general, they are
better at managing their time, they’re learning because they want to or need
to, and they bring a lot of previous experience of learning into the room, so
they tend to be better at knowing when they’re struggling productively and
when they’re just struggling.

Working in pairs, write a one-paragraph pitch for a class on web design
that touches on these points, and then compare your pair’s pitch with those
of other pairs.

Conversational Programmers (think-pair-share/15 minutes)

A conversational programmer is someone who needs to know enough
about computing to have a meaningful conversation with a programmer, but
isn’t going to program themselves. [Wang2018] found that most learning
resources don’t address this group’s needs. Working in pairs, write a pitch
for a half-day workshop intended to help people that fit this description,
and then share your pair’s pitch with the rest of the class.

183

15 Partnerships

After reading this chapter, you will be able to. . .

• Explain why teachers in schools and universities do and don’t adopt
better teaching practices.

• Summarize methods that can be used to effect changes in educa-
tional institutions.

Section 13.1 said that the first step in building a community is to decide
if you really need to, or whether you would be more effective joining
an existing organization. Either way, the organization you’re part of will
eventually need to work with other, more established groups: schools,
community programs, churches, the courts, and companies. This chapter
presents a handful of strategies for figuring out how to do that, and when
it’s worthwhile.

Unlike most of the rest of this book, this chapter is drawn more from
things I have seen than from things I have done. Most of my attempts to get
large institutions to change have been unproductive (which is part of why
I left a university position to re-start Software Carpentry1 in 2010). While
contributions to any part of this book are welcome, I would be particularly
grateful to hear what you have to say about the issues discussed below.

15.1 Working With Schools

Everyone is afraid of the unknown and of embarrassing themselves. As a
result, most people would rather fail than change. For example, Lauren
Herckis looked at why university faculty don’t adopt better teaching meth-
ods2. She found that the main reason is a fear of looking stupid in front of
their students; secondary reasons were concern that the inevitable bumps in
changing teaching methods would affect course evaluations, and a desire to

1http://carpentries.org
2https://www.insidehighered.com/news/2017/07/06/anthropologist-studies-why-
professors-dont-adopt-innovative-teaching-methods

185

http://carpentries.org
https://www.insidehighered.com/news/2017/07/06/anthropologist-studies-why-professors-dont-adopt-innovative-teaching-methods
https://www.insidehighered.com/news/2017/07/06/anthropologist-studies-why-professors-dont-adopt-innovative-teaching-methods

continue emulating the lecturers who had inspired them. It’s pointless to
argue about whether these issues are “real” or not: faculty believe they are,
so any plan to work with faculty needs to address them.

[Bark2015] did a two-part study of how computer science educators
adopt new teaching practices as individuals, organizationally, and in society
as a whole. They asked and answered three key questions:

1. How do faculty hear about new teaching practices? They intentionally
seek them out because they’re motivated to solve a problem (par-
ticularly student engagement), are made aware through deliberate
initiatives by their institutions, pick them up from colleagues, or get
them from expected and unexpected interactions at conferences (either
teaching-related or technical).

2. Why do they try them out? Sometimes because of institutional incentives
(e.g., they innovate to improve their chances of promotion), but there
is often tension at research institutions where rhetoric about the impor-
tance of teaching is largely disbelieved. Another important reason is
their own cost/benefit analysis: will the innovation save them time? A
third is that they are inspired by role models—again, this largely affects
innovations aimed to improve engagement and motivation rather than
learning outcomes—and a fourth is trusted sources, e.g., people they
meet at conferences who are in the same situation that they are and
reported successful adoption.

But faculty had concerns, and those concerns were often not ad-
dressed by people advocating changes. The first was Glass’s Law: any
new tool or practice initially slows you down. Another is that the physi-
cal layout of classrooms makes many new practices hard: discussion
groups just don’t work in theater-style seating.

But the most telling result was this: “Despite being researchers
themselves, the CS faculty we spoke to for the most part did not believe
that results from educational studies were credible reasons to try out
teaching practices.” This is consistent with other findings: even people
whose entire careers are devoted to research will disregard education
research.

3. Why do they keep using them? As [Bark2015] says, “Student feedback is
critical,” and is often the strongest reason to continue using a practice,
even though we know that students’ self-reports don’t correlate strongly
with learning outcomes. (Note that student attendance in lectures is
seen as an indicator of engagement.) Another reason to retaining a
practice is institutional requirements, although if this is the motivation,
people will often drop the practice and regress to whatever they were
doing before when the explicit incentive or monitoring is removed.

The good news is, you can tackle these problems systematically.
[Baue2015] looked at adoption of new medical techniques within the

186

US Veterans Administration. They found that evidence-based practices
in medicine take an average of 17 years to be incorporated into routine
general practice, and that only about half of such practices are ever widely
adopted. This depressing finding and others like it spurred the growth
of implementation science, which is the scientific study of ways to get
people to actually adopt better evidence-based practices.

As Chapter 13 said, the starting point is to find out what the people you’re
trying to help believe they need. For example, [Yada2016] summarizes
feedback from K-12 teachers on the preparation and support they want;
while it may not all be applicable to your setting, having a cup of tea with a
few people and listening before you speak can make a world of difference.

Once you know what people need, the next step is to make changes
incrementally, within institutions’ own frameworks. [Nara2018] describes
an intensive three-year bachelor’s program based on tight-knit cohorts and
administrative support that tripled graduation rates. Elsewhere, [Hu2017]
describes impact of introducing a six-month certification program for exist-
ing high school teachers who want to teach computing (as opposed to the
older two-year/five-course program). The number of computing teachers
had been stable from 2007 to 2013, but quadrupled after introduction of
the new certification program, without diluting quality: new-to-computing
teachers seemed to be as effective as teachers with more computing training
at teaching the introductory Exploring Computer Science course. The au-
thors report, “How much CS content students self-reported learning in ECS
appears to be based on how much they believed they knew before taking
ECS, and appears to have no correlation to their teacher’s CS background.”

More broadly, [Borr2014] categorizes ways to make change happen in
higher education. The categories are defined by whether the change is
individual or to the system as a whole, and whether it is prescribed (top-
down) or emergent (bottom-up). The person trying to make the changes—
and make them stick—has a different role in each situation, and should
pursue different strategies accordingly.

The paper goes on to explain each of the methods in detail, while
[Hend2015a, Hend2015b] present the same ideas in more actionable form.
Coming in from outside, you will probably fall into the Individual/Emergent
category to start with, since you will be approaching teachers one by one and
trying to make change happen bottom-up. If this is the case, the strategies
Borrego and Henderson recommend center around having teachers reflect
on their teaching individually or in groups. Since they may know more
about teaching than you do, this often comes down to doing live coding
sessions with them so that they know how to program themselves, and to
demonstrate whatever curriculum you may already have.

187

15.2 Working Outside Schools

Schools and universities aren’t the only places people go to learn program-
ming; over the past few years, a growing number have turned to intensive
bootcamp programs. These are typically one to six months long, run by
private firms for profit, and target people who are retraining to get into tech.
Some are very high quality, but others exist primarily to separate people
(often from low-income backgrounds) from their money [McMi2017].

[Thay2017] interviewed 26 alumni of such bootcamps that provide a
second chance for those who missed computing education opportunities
earlier (though the authors phrasing this as “missed earlier opportunities”
makes some pretty big assumptions when it comes to people from under-
represented groups). Bootcamp students face great personal costs and
risks: significant time, money, and effort spent before, during, and after
bootcamps, and career change could take students a year or more. Several
interviewees felt that their certificates were looked down on by employers;
as some said, getting a job means passing an interview, but interviewers
often won’t share their reasons for rejection, so it’s hard to know what to
fix or what else to learn. Many resorted to internships (paid or otherwise)
and spent a lot of time building their portfolios and networking. The three
informal barriers they most clearly identified were knowledge (or rather,
jargon), impostor syndrome, and a sense of not fitting in.

[Burk2018] dug into this a bit deeper by comparing the skills and cre-
dentials that tech industry recruiters are looking for to those provided by
4-year degrees and bootcamps. They interviewed 15 hiring managers from
firms of various sizes and ran some focus groups, and found that recruiters
uniformly emphasized soft skills (especially teamwork, communication, and
the ability to continue learning). Many companies required a 4-year degree
(though not necessarily in computer science), but many also praised boot-
camp graduates for being older or more mature and having more up-to-date
knowledge.

If you are approaching one of these groups, your best strategy could
well be to emphasize what you know about teaching rather than what you
know about tech, since many of their founders and staff have programming
backgrounds but little or no training in education. The first few chapters of
this book have played well with this audience in the past, and [Lang2016]
describes evidence-based teaching practices that can be put in place with
minimal effort and at low cost. These may not have the most impact, but
scoring a few early wins helps build support for larger and riskier efforts.

188

15.3 Final Thoughts

It is impossible to change large institutions on your own: you need allies,
and to get allies, you need tactics. The most useful guide I have found is
[Mann2015], which catalogs more than four dozen methods you can use,
and organizes them according to whether they’re best deployed early on,
later, throughout the change cycle, or when you encounter resistance. A
handful of their patterns include:

Small Successes: To avoid becoming overwhelmed by the exercises and
all the things you have to do when you’re involved in an organizational
change effort, celebrate even small successes.

In Your Space: Keep the new idea visible by placing reminders throughout
the organization.

Token: To keep a new idea alive in a person’s memory, hand out tokens
that can be identified with the topic being introduced.

Champion Skeptic: Ask strong opinion leaders who are skeptical of your
new idea to play the role of “official skeptic”. Use their comments to
improve your effort, even if you don’t change their minds.

Conversely, [Farm2006] has ten tongue-in-cheek rules for ensuring that
a new tool isn’t adopted, all of which apply to new teaching practices as
well:

1. Make it optional.
2. Economize on training.
3. Don’t use it in a real project.
4. Never integrate it.
5. Use it sporadically.
6. Make it part of a quality initiative.
7. Marginalize the champion.
8. Capitalize on early missteps.
9. Make a small investment.

10. Exploit fear, uncertainty, doubt, laziness, and inertia.

The most important strategy is to be willing to change your goals based
on what you learn from the people you are trying to help. It could well be
that tutorials showing them how to use a spreadsheet will help them more
quickly and more reliably than an introduction to JavaScript. I have often
made the mistake of confusing things I was passionate about with things
that other people ought to know; if you truly want to be a partner, always
remember that learning and change have to go both ways.

189

15.4 Exercises

Collaborations (small groups/30 minutes)

Answer the following questions on your own, and then compare your an-
swers to those given by other members of your group.

1. Do you have any agreements or relationships with other groups?
2. Do you want to have relationships with any other groups?
3. How would having (or not having) collaborations help you to achieve

your goals?
4. What are your key collaborative relationships?
5. Are these the right collaborators for achieving your goals?
6. With what groups or entities would you like your organization to have

agreements or relationships?

Educationalization (whole class/10 minutes)

[Laba2008] explores why the United States and other countries keep push-
ing the solution of social problems onto educational institutions, and why
that continues not to work. As he points out, “[Education] has done very
little to promote equality of race, class, and gender; to enhance public
health, economic productivity, and good citizenship; or to reduce teenage
sex, traffic deaths, obesity, and environmental destruction. In fact, in many
ways it has had a negative effect on these problems by draining money and
energy away from social reforms that might have had a more substantial
impact.” He goes on to write:

So how are we to understand the success of this institution in light of
its failure to do what we asked of it? One way of thinking about this
is that education may not be doing what we ask, but it is doing what
we want. We want an institution that will pursue our social goals in a
way that is in line with the individualism at the heart of the liberal ideal,
aiming to solve social problems by seeking to change the hearts, minds,
and capacities of individual students. Another way of putting this is that
we want an institution through which we can express our social goals
without violating the principle of individual choice that lies at the center
of the social structure, even if this comes at the cost of failing to achieve
these goals. So education can serve as a point of civic pride, a showplace
for our ideals, and a medium for engaging in uplifting but ultimately
inconsequential disputes about alternative visions of the good life. At the
same time, it can also serve as a convenient whipping boy that we can
blame for its failure to achieve our highest aspirations for ourselves as a
society.

How do efforts to teach computational thinking and digital citizenship
in schools fit into this framework?

190

Institutional Adoption (whole class/15 minutes)

Re-read the list of motivations to adopt new practices given in Section 15.1.
Which of these apply to you and your colleagues? Which are irrelevant
to your context? Which do you emphasize if and when you interact with
people working in formal educational institutions?

Making It Fail (small groups/15 minutes)

Working in small groups, re-read the list of ways to ensure new tools aren’t
adopted given in Section 15.3. Which of these have you seen done recently?
Which have you done yourself? What form did they take?

Mentoring (whole class/15 minutes)

The Institute for African-American Mentoring in Computer Science has
published a brief set of guidelines for mentoring doctoral students, which
you can download from http://iaamcs.org/guidelines. Take a few minutes
to read the guidelines individually, and then go through them as a class and
rate your efforts for your own group as +1 (definitely doing), -1 (definitely
not doing), and 0 (not sure or not applicable).

191

http://iaamcs.org/guidelines

16 Why I Teach

When I first started teaching at the University of Toronto, some of my
students asked me why I was doing it. This was my answer:

When I was your age, I thought universities existed to teach people how
to learn. Later, in grad school, I thought universities were about doing
research and creating new knowledge. Now that I’m in my forties, though,
I’ve realized that what we’re really teaching you is how to take over the
world, because you’re going to have to whether you want to or not.

My parents are in their seventies. They don’t run the world any more;
it’s people my age who pass laws, set interest rates, and make life-and-
death decisions in hospitals. As scary as it is, we are the grownups.

Twenty years from now, though, we’ll be heading for retirement and
you will be in charge. That may sound like a long time when you’re
nineteen, but take three breaths and it’s gone. That’s why we give you
problems whose answers can’t be cribbed from last year’s notes. That’s
why we put you in situations where you have to figure out what needs to
be done right now, what can be left for later, and what you can simply
ignore. It’s because if you don’t learn how to do these things now, you
won’t be ready to do them when you have to.

It was all true, but it wasn’t the whole story. I don’t want people to make
the world a better place so that I can retire in comfort. I want them to do it
because it’s the greatest adventure of our time. A hundred and fifty years
ago, most societies practiced slavery. A hundred years ago, my grandmother
wasn’t legally a person1 in Canada. Fifty years ago, most of the world’s
people suffered under totalitarian rule; in the year I was born, judges were
still ordering electroshock therapy to “cure” homosexuals. There’s still a lot
wrong with the world, but look at how many more choices we have than
our grandparents did. Look at how many more things we can know, and be,
and enjoy.

This didn’t happen by chance. It happened because millions of people
made millions of little decisions, the sum of which was a better world. We

1https://en.wikipedia.org/wiki/The_Famous_Five_(Canada)

193

https://en.wikipedia.org/wiki/The_Famous_Five_(Canada)

don’t think of these day-to-day decisions as political, but every time we buy
one brand of running shoe instead of another or shout an anatomical insult
instead of a racial one at a cab driver, we’re choosing one vision of the world
instead of another.

In his 1947 essay “Why I Write2”, George Orwell wrote:

In a peaceful age I might have written ornate or merely descriptive books,
and might have remained almost unaware of my political loyalties. As it
is I have been forced into becoming a sort of pamphleteer. . . Every line
of serious work that I have written since 1936 has been written, directly
or indirectly, against totalitarianism. . . It seems to me nonsense, in a
period like our own, to think that one can avoid writing of such subjects.
Everyone writes of them in one guise or another. It is simply a question of
which side one takes. . .

Replace “writing” with “teaching” and you’ll have the reason I do what I
do. The world doesn’t get better on its own. It gets better because people
make it better: penny by penny, vote by vote, and one lesson at a time. So:

Start where you are.
Use what you have.
Help who you can.

Thank you for reading. I hope we can learn something together some day.

2http://www.resort.com/~prime8/Orwell/whywrite.html

194

http://www.resort.com/~prime8/Orwell/whywrite.html

Bibliography

[Abba2012] Janet Abbate. Recoding Gender: Women’s Changing Participa-
tion in Computing. MIT Press, 2012. Describes the careers and
accomplishments of the women who shaped the early history
of computing, but have all too often been written out of that
history.

[Abel1996] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
Structure and Interpretation of Computer Programs. MIT
Press, second edition, 1996. One of the most widely cited
introductions to programming ever written.

[Abel2009] Andrew Abela. Chart suggestions - a thought starter.
http://extremepresentation.typepad.com/files/choosing-
a-good-chart-09.pdf, 2009. A graphical decision tree for
choosing the right type of chart.

[Adam1975] Frank Adams and Myles Horton. Unearthing Seeds of Fire:
The Idea of Highlander. Blair, 1975. A history of the High-
lander Folk School and its founder, Myles Horton.

[Aike1975] Edwin G. Aiken, Gary S. Thomas, and William A. Shennum.
Memory for a lecture: Effects of notes, lecture rate, and
informational density. Journal of Educational Psychology,
67(3):439–444, 1975. An early landmark study showing that
taking notes improved retention.

[Aiva2016] Efthimia Aivaloglou and Felienne Hermans. How kids code
and how we know. In Proc. 2016 International Computing
Education Research Conference (ICER’16). Association for
Computing Machinery (ACM), 2016. Presents an analysis of
250,000 Scratch projects.

[Alha2018] Sohail Alhazmi, Margaret Hamilton, and Charles The-
vathayan. CS for All: Catering to diversity of master’s stu-
dents through assignment choices. In Proc. 2018 Technical
Symposium on Computer Science Education (SIGCSE’18). As-
sociation for Computing Machinery (ACM), 2018. Reports

195

improvement in learning outcomes and student satisfaction in
a course for students from a variety of academic backgrounds
which allowed them to choose -related assignments.

[Alin1989] Saul D. Alinsky. Rules for Radicals: A Practical Primer for
Realistic Radicals. Vintage, 1989. A widely-read guide to
community organization written by one of the 20th Century’s
great organizers.

[Alqa2017] Basma S. Alqadi and Jonathan I. Maletic. An empirical study
of debugging patterns among novice programmers. In Proc.
2017 Technical Symposium on Computer Science Education
(SIGCSE’17). Association for Computing Machinery (ACM),
2017. Reports patterns in the debugging activities and success
rates of novice programmers.

[Alvi1999] Jennifer Alvidrez and Rhona S. Weinstein. Early teacher per-
ceptions and later student academic achievement. Journal of
Educational Psychology, 91(4):731–746, 1999. An influential
study of the effects of teachers’ perceptions of students on their
later achievements.

[Ambr2010] Susan A. Ambrose, Michael W. Bridges, Michele DiPietro,
Marsha C. Lovett, and Marie K. Norman. How Learning
Works: Seven Research-Based Principles for Smart Teaching.
Jossey-Bass, 2010. Summarizes what we know about educa-
tion and why we believe it’s true, from cognitive psychology to
social factors.

[Ande2001] Lorin W. Anderson and David R. Krathwohl, editors. A
Taxonomy for Learning, Teaching, And Assessing: A Revision of
Bloom’s Taxonomy of Educational Objectives. Longman, 2001.
A widely-used revision to Bloom’s Taxonomy.

[Armo2008] Michal Armoni and David Ginat. Reversing: A fundamen-
tal idea in computer science. Computer Science Education,
18(3):213–230, Sep 2008. Argues that the notion of reversing
things is an unrecognized fundamental concept in computing
education.

[Atki2000] Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and
Donald Wortham. Learning from examples: Instructional
principles from the worked examples research. Review of
Educational Research, 70(2):181–214, Jun 2000. A compre-
hensive survey of worked examples research at the time.

[Avel2013] Emma-Louise Aveling, Peter McCulloch, and Mary Dixon-
Woods. A qualitative study comparing experiences of the
surgical safety checklist in hospitals in high-income and low-
income countries. BMJ Open, 3(8), Aug 2013. Reports the

196

effectiveness of surgical checklist implementations in the UK
and Africa.

[Bacc2013] Alberto Bacchelli and Christian Bird. Expectations, out-
comes, and challenges of modern code review. In Proc. 2013
International Conference on Software Engineering (ICSE’13),
May 2013. A summary of work on code review.

[Bari2017] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes,
Jing Feng, Emerson Murphy-Hill, and Chris Parnin. Do
developers read compiler error messages? In Proc. 2017
International Conference on Software Engineering (ICSE’17).
Institute of Electrical and Electronics Engineers (IEEE), May
2017. Reports that developers do read error messages and
doing so is as hard as reading source code: it takes 13-25% of
total task time.

[Bark2014] Lecia Barker, Christopher Lynnly Hovey, and Leisa D. Thomp-
son. Results of a large-scale, multi-institutional study of
undergraduate retention in computing. In Proc. 2014 Fron-
tiers in Education Conference (FIE’14). Institute of Electrical
and Electronics Engineers (IEEE), Oct 2014. Reports that
meaningful assignments, faculty interaction with students, stu-
dent collaboration on assignments, and (for male students)
pace and workload relative to expectations drive retention in
computing classes, while interactions with teaching assistants
or with peers in extracurricular activities have little impact.

[Bark2015] Lecia Barker, Christopher Lynnly Hovey, and Jane Gruning.
What influences CS faculty to adopt teaching practices? In
Proc. 2015 Technical Symposium on Computer Science Edu-
cation (SIGCSE’15). Association for Computing Machinery
(ACM), 2015. Describes how computer science educators adopt
new teaching practices.

[Basi1987] Victor R. Basili and Richard W. Selby. Comparing the ef-
fectiveness of software testing strategies. IEEE Transactions
on Software Engineering, SE-13(12):1278–1296, Dec 1987.
An early and influential summary of the effectiveness of code
review.

[Basu2015] Soumya Basu, Albert Wu, Brian Hou, and John DeNero.
Problems before solutions: Automated problem clarification
at scale. In Proc. 2015 Conference on Learning @ Scale
(L@S’15). Association for Computing Machinery (ACM),
2015. Describes a system in which students have to unlock
test cases for their code by answering MCQs, and presents data
showing that this is effective.

197

[Batt2018] Lina Battestilli, Apeksha Awasthi, and Yingjun Cao. Two-
stage programming projects: Individual work followed by
peer collaboration. In Proc. 2018 Technical Symposium on
Computer Science Education (SIGCSE’18). Association for
Computing Machinery (ACM), 2018. Reports that learning
outcomes were improved by two-stage projects in which stu-
dents work individually, then re-work the same problem in
pairs.

[Baue2015] Mark S. Bauer, Laura Damschroder, Hildi Hagedorn, Jeffrey
Smith, and Amy M. Kilbourne. An introduction to implemen-
tation science for the non-specialist. BMC Psychology, 3(1),
Sep 2015. Explains what implementation science is, using
examples from the US Veterans Administration to illustrate.

[Beck2013] Leland Beck and Alexander Chizhik. Cooperative learning
instructional methods for CS1: Design, implementation,
and evaluation. ACM Transactions on Computing Education,
13(3):10:1–10:21, Aug 2013. Reports that cooperative learn-
ing enhances learning outcomes and self-efficacy in CS1.

[Beck2014] Victoria Beck. Testing a model to predict online cheating—
much ado about nothing. Active Learning in Higher Education,
15(1):65–75, Jan 2014. Reports that cheating is no more
likely in online courses than in face-to-face courses.

[Beck2016] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire
McDonnell, Kyle Goslin, and Catherine Mooney. Effective
compiler error message enhancement for novice program-
ming students. Computer Science Education, 26(2-3):148–
175, Jul 2016. Reports that improved error messages helped
novices learn faster.

[Beni2017] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach,
and Dror G. Feitelson. Meaningful identifier names: The
case of single-letter variables. In Proc. 2017 International
Conference on Program Comprehension (ICPC’17). Institute
of Electrical and Electronics Engineers (IEEE), May 2017.
Reports that use of single-letter variable names doesn’t affect
ability to modify code, and that some single-letter variable
names have implicit types and meanings.

[Benn2000] Patricia Benner. From Novice to Expert: Excellence and Power
in Clinical Nursing Practice. Pearson, 2000. A classic study of
clinical judgment and the development of expertise.

[Benn2007a] Jens Bennedsen and Michael E. Caspersen. Failure rates in
introductory programming. ACM SIGCSE Bulletin, 39(2):32,

198

Jun 2007. Reports that 67% of students pass CS1, with varia-
tion from 5% to 100%.

[Benn2007b] Jens Bennedsen and Carsten Schulte. What does “objects-
first” mean?: An international study of teachers’ perceptions
of objects-first. In Proc. 2007 Koli Calling Conference on
Computing Education Research (Koli’07), pages 21–29, 2007.
Teases out three meanings of “objects first” in computing edu-
cation.

[Berg2012] Joseph Bergin, Jane Chandler, Jutta Eckstein, Helen Sharp,
Mary Lynn Manns, Klaus Marquardt, Marianna Sipos,
Markus Völter, and Eugene Wallingford. Pedagogical Pat-
terns: Advice for Educators. CreateSpace, 2012. A catalog of
design patterns for teaching.

[Biel1995] Katerine Bielaczyc, Peter L. Pirolli, and Ann L. Brown. Train-
ing in self-explanation and self-regulation strategies: Inves-
tigating the effects of knowledge acquisition activities on
problem solving. Cognition and Instruction, 13(2):221–252,
Jun 1995. Reports that training learners in self-explanation
accelerates their learning.

[Bigg2011] John Biggs and Catherine Tang. Teaching for Quality Learn-
ing at University. Open University Press, 2011. A step-by-step
guide to lesson development, delivery, and evaluation for peo-
ple working in higher education.

[Bink2012] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I.
Maletic, Christopher Morrell, and Bonita Sharif. The impact
of identifier style on effort and comprehension. Empirical
Software Engineering, 18(2):219–276, May 2012. Reports
that reading and understanding code is fundamentally differ-
ent from reading prose, and that experienced developers are
relatively unaffected by identifier style, but beginners benefit
from the use of camel case (versus pothole case).

[Blik2014] Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sa-
hami, Steven Cooper, and Daphne Koller. Programming
pluralism: Using learning analytics to detect patterns in the
learning of computer programming. Journal of the Learning
Sciences, 23(4):561–599, Oct 2014. Reports an attempt to cat-
egorize novice programmer behavior using machine learning
that found interesting patterns on individual assignments.

[Bloo1984] Benjamin S. Bloom. The 2 sigma problem: The search for
methods of group instruction as effective as one-to-one tutor-
ing. Educational Researcher, 13(6):4–16, Jun 1984. Reports

199

that students tutored one-to-one using mastery learning tech-
niques perform two standard deviations better than those who
learned through conventional lecture.

[Boha2011] Mark Bohay, Daniel P. Blakely, Andrea K. Tamplin, and
Gabriel A. Radvansky. Note taking, review, memory, and
comprehension. American Journal of Psychology, 124(1):63,
2011. Reports that note-taking improves retention most at
deeper levels of understanding.

[Boll2014] David Bollier. Think Like a Commoner: A Short Introduction
to the Life of the Commons. New Society Publishers, 2014. A
short introduction to a widely-used model of governance.

[Borr2014] Maura Borrego and Charles Henderson. Increasing the use
of evidence-based teaching in STEM higher education: A
comparison of eight change strategies. Journal of Engineering
Education, 103(2):220–252, Apr 2014. Categorizes different
approaches to effecting change in higher education.

[Bria2015] Samuel A. Brian, Richard N. Thomas, James M. Hogan,
and Colin Fidge. Planting bugs: A system for testing stu-
dents’ unit tests. In Proc. 2015 Conference on Innovation and
Technology in Computer Science Education (ITiCSE’15). Asso-
ciation for Computing Machinery (ACM), 2015. Describes a
tool for assessing students’ programs and unit tests and finds
that students often write weak tests and misunderstand the
role of unit testing.

[Broo2016] Stephen D. Brookfield and Stephen Preskill. The Discussion
Book: 50 Great Ways to Get People Talking. Jossey-Bass, 2016.
Describes fifty different ways to get groups talking productively.

[Brop1983] Jere E. Brophy. Research on the self-fulfilling prophecy and
teacher expectations. Journal of Educational Psychology,
75(5):631–661, 1983. A early, influential study of the effects
of teachers’ perceptions on students’ achievements.

[Brow2007] Michael Jacoby Brown. Building Powerful Community Orga-
nizations: A Personal Guide to Creating Groups that Can Solve
Problems and Change the World. Long Haul Press, 2007. A
practical guide to creating effective organizations in and for
communities.

[Brow2017] Neil C. C. Brown and Amjad Altadmri. Novice java program-
ming mistakes. ACM Transactions on Computing Education,
17(2), May 2017. Summarizes the authors’ analysis of novice
programming mistakes.

200

[Brow2018] Neil C. C. Brown and Greg Wilson. Ten quick tips for teach-
ing programming. PLoS Computational Biology, 14(4), April
2018. A short summary of what we actually know about
teaching programming and why we believe it’s true.

[Buff2015] Kevin Buffardi and Stephen H. Edwards. Reconsidering auto-
mated feedback: A test-driven approach. In Proc. 2015 Tech-
nical Symposium on Computer Science Education (SIGCSE’15).
Association for Computing Machinery (ACM), 2015. De-
scribes a system that associates failed tests with particular
features in a learner’s code so that learners cannot game the
system.

[Burg2015] Sheryl E. Burgstahler. Universal Design in Higher Education:
From Principles to Practice. Harvard Education Press, sec-
ond edition, 2015. Describes how to make online teaching
materials accessible to everyone.

[Burk2018] Quinn Burke, Cinamon Bailey, Louise Ann Lyon, and Emily
Greeen. Understanding the software development industry’s
perspective on coding boot camps versus traditional 4-year
colleges. In Proc. 2018 Technical Symposium on Computer
Science Education (SIGCSE’18). Association for Computing
Machinery (ACM), 2018. Compares the skills and credentials
that tech industry recruiters are looking for to those provided
by 4-year degrees and bootcamps.

[Butl2017] Zack Butler, Ivona Bezakova, and Kimberly Fluet. Pen-
cil puzzles for introductory computer science. In Proc.
2017 Technical Symposium on Computer Science Education
(SIGCSE’17). Association for Computing Machinery (ACM),
2017. Describes pencil-and-paper puzzles that can be turned
into CS1/CS2 assignments, and reports that they are enjoyed
by students and encourage meta-cognition.

[Byck2005] Pauli Byckling, Petri Gerdt, and Jorma Sajaniemi. Roles of
variables in object-oriented programming. In Proc. 2005 Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’05). Association for Computing
Machinery (ACM), 2005. Presents single-variable design pat-
terns common in novice programs.

[Camp2016] Jennifer Campbell, Diane Horton, and Michelle Craig. Fac-
tors for success in online CS1. In Proc. 2016 Conference on
Innovation and Technology in Computer Science Education
(ITiCSE’16). Association for Computing Machinery (ACM),
2016. Compares students who opted in to an online CS1 class
online with those who took it in person in a flipped classroom.

201

[Cao2017a] Yingjun Cao and Leo Porter. Evaluating student learning
from collaborative group tests in introductory computing.
In Proc. 2017 Technical Symposium on Computer Science Edu-
cation (SIGCSE’17). Association for Computing Machinery
(ACM), 2017. Reports significant short-term gains but no
long-term gains for students doing exams collaboratively.

[Cao2017b] Yingjun Cao and Leo Porter. Impact of performance level
and group composition on student learning during collab-
orative exams. In Proc. 2017 Conference on Innovation and
Technology in Computer Science Education (ITiCSE’17). Asso-
ciation for Computing Machinery (ACM), 2017. Reports that
collaborative exams benefit middling students more than high
or low-performing students, and that homogeneous groups
benefit more than heterogeneous ones.

[Carr1987] John Carroll, Penny Smith-Kerker, James Ford, and Sandra
Mazur-Rimetz. The minimal manual. Human-Computer
Interaction, 3(2):123–153, Jun 1987. The foundational paper
on minimalist instruction.

[Carr2014] John Carroll. Creating minimalist instruction. International
Journal of Designs for Learning, 5(2), Nov 2014. A look back
on the author’s work on minimalist instruction.

[Cart2017] Adam Scott Carter and Christopher David Hundhausen. Us-
ing programming process data to detect differences in stu-
dents’ patterns of programming. In Proc. 2017 Technical
Symposium on Computer Science Education (SIGCSE’17). As-
sociation for Computing Machinery (ACM), 2017. Shows
that students of different levels approach programming tasks
differently, and that these differences can be detected automat-
ically.

[Casp2007] Michael E. Caspersen and Jens Bennedsen. Instructional
design of a programming course. In Proc. 2007 International
Computing Education Research Conference (ICER’07). Asso-
ciation for Computing Machinery (ACM), 2007. Goes from
a model of human cognition to three learning theories, and
from there to the design of an introductory object-oriented
programming course.

[Cele2018] Mehmet Celepkolu and Kristy Elizabeth Boyer. Thematic
analysis of students’ reflections on pair programming in CS1.
In Proc. 2018 Technical Symposium on Computer Science Edu-
cation (SIGCSE’18). Association for Computing Machinery
(ACM), 2018. Reports that pair programming has the same

202

learning gains side-by-side programming but higher student
satisfaction.

[Ceti2016] Ibrahim Cetin and Christine Andrews-Larson. Learning sort-
ing algorithms through visualization construction. Computer
Science Education, 26(1):27–43, Jan 2016. Reports that peo-
ple learn more from constructing algorithm visualizations than
they do from viewing visualizations constructed by others.

[Chen2009] Nicholas Chen and Maurice Rabb. A pattern language for
screencasting. In Proc. 2009 Conference on Pattern Languages
of Programs (PLoP’09). Association for Computing Machinery
(ACM), 2009. A brief, well-organized collection of tips for
making screencasts.

[Chen2017] Nick Cheng and Brian Harrington. The code mangler: Eval-
uating coding ability without writing any code. In Proc.
2017 Technical Symposium on Computer Science Education
(SIGCSE’17). Association for Computing Machinery (ACM),
2017. Reports that student performance on exercises in which
they undo code mangling correlates strongly with performance
on traditional assessments.

[Cher2007] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J.
Ko. Let’s go to the whiteboard: How and why software de-
velopers use drawings. In Proc. 2007 Conference on Human
Factors in Computing Systems (CHI’07). Association for Com-
puting Machinery (ACM), 2007. Reports that developers draw
diagrams to aid discussion rather than to document designs.

[Cher2009] Sapna Cheryan, Victoria C. Plaut, Paul G. Davies, and
Claude M. Steele. Ambient belonging: How stereotypical
cues impact gender participation in computer science. Jour-
nal of Personality and Social Psychology, 97(6):1045–1060,
2009. Reports that subtle environmental clues have a mea-
surable impact on the interest that people of different genders
have in computing.

[Chet2014] Raj Chetty, John N. Friedman, and Jonah E. Rockoff. Mea-
suring the impacts of teachers II: Teacher value-added and
student outcomes in adulthood. American Economic Review,
104(9):2633–2679, Sep 2014. Reports that that good teach-
ers have a small but measurable impact on student outcomes.

[Chi1989] Michelene T. H. Chi, Miriam Bassok, Matthew W. Lewis,
Peter Reimann, and Robert Glaser. Self-explanations: How
students study and use examples in learning to solve prob-
lems. Cognitive Science, 13(2):145–182, Apr 1989. A seminal
paper on the power of self-explanation.

203

[Coco2018] Center for Community Organizations. The “problem”
woman of colour in the workplace. https://coco-
net.org/problem-woman-colour-nonprofit-organizations/,
2018. Outlines the experience of many women of color in the
workplace.

[Coll1991] Allan Collins, John Seely Brown, and Ann Holum. Cognitive
apprenticeship: Making thinking visible. American Educator,
6:38–46, 1991. Describes an educational model based on the
notion of apprenticeship and master guidance.

[Coom2012] Norman Coombs. Making Online Teaching Accessible. Jossey-
Bass, 2012. An accessible guide to making online lessons
accessible.

[Covi2017] Martin V. Covington, Linda M. von Hoene, and Dominic J.
Voge. Life Beyond Grades: Designing College Courses to Pro-
mote Intrinsic Motivation. Cambridge University Press, 2017.
Explores ways of balancing intrinsic and extrinsic motivation
in institutional education.

[Craw2010] Matthew B. Crawford. Shop Class as Soulcraft: An Inquiry
into the Value of Work. Penguin, 2010. A deep analysis of
what we learn about ourselves by doing certain kinds of work.

[Crou2001] Catherine H. Crouch and Eric Mazur. Peer instruction: Ten
years of experience and results. American Journal of Physics,
69(9):970–977, Sep 2001. Reports results from the first ten
years of peer instruction in undergraduate physics classes, and
describes ways in which its implementation changed during
that time.

[Csik2008] Mihaly Csikszentmihaly. Flow: The Psychology of Optimal
Experience. Harper, 2008. An influential discussion of what it
means to be fully immersed in a task.

[Cumm2011] Stephen Cummins, Liz Burd, and Andrew Hatch. Investigat-
ing shareable feedback tags for programming assignments.
Computer Science Education, 21(1):81–103, Mar 2011. De-
scribes the use of tagging for peer feedback in introductory
programming courses.

[Cunn2017] Kathryn Cunningham, Sarah Blanchard, Barbara J. Ericson,
and Mark Guzdial. Using tracing and sketching to solve
programming problems. In Proc. 2017 Conference on Interna-
tional Computing Education Research (ICER’17). Association
for Computing Machinery (ACM), 2017. Found that writing
new values near variables’ names as they change is the most
effective tracing technique.

204

[Cutt2017] Quintin Cutts, Charles Riedesel, Elizabeth Patitsas, Elizabeth
Cole, Peter Donaldson, Bedour Alshaigy, Mirela Gutica, Arto
Hellas, Edurne Larraza-Mendiluze, and Robert McCartney.
Early developmental activities and computing proficiency. In
Proc. 2017 Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE’17). Association for Com-
puting Machinery (ACM), 2017. Surveyed adult computer
users about childhood activities and found strong correlation
between confidence and computer use based on reading on
one’s own and playing with construction toys with no moving
parts (like Lego).

[Dahl2018] Sarah Dahlby Albright, Titus H. Klinge, and Samuel A. Rebel-
sky. A functional approach to data science in CS1. In Proc.
2018 Technical Symposium on Computer Science Education
(SIGCSE’18). Association for Computing Machinery (ACM),
2018. Describes the design of a CS1 class built around data
science.

[DeBr2015] Pedro De Bruyckere, Paul A. Kirschner, and Casper D. Hul-
shof. Urban Myths about Learning and Education. Academic
Press, 2015. Describes and debunks some widely-held myths
about how people learn.

[Deb2018] Debzani Deb, Muztaba Fuad, James Etim, and Clay Gloster.
MRS: Automated assessment of interactive classroom ex-
ercises. In Proc. 2018 Technical Symposium on Computer
Science Education (SIGCSE’18). Association for Computing
Machinery (ACM), 2018. Reports that doing in-class exercises
with realtime feedback using mobile devices improved concept
retention and student engagement while reducing failure rates.

[Derb2006] Esther Derby and Diana Larsen. Agile Retrospectives: Making
Good Teams Great. Pragmatic Bookshelf, 2006. Describes
how to run a good project retrospective.

[DiSa2014a] Betsy DiSalvo, Mark Guzdial, Amy Bruckman, and Tom
McKlin. Saving face while geeking out: Video game testing
as a justification for learning computer science. Journal of
the Learning Sciences, 23(3):272–315, Jul 2014. Found that
65% of male African-American participants in a game testing
program went on to study computing.

[DiSa2014b] Betsy DiSalvo, Cecili Reid, and Parisa Khanipour Roshan.
They can’t find us. In Proc. 2014 Technical Symposium on
Computer Science Education (SIGCSE’14). Association for
Computing Machinery (ACM), 2014. Reports that the search

205

terms parents were likely to use for out-of-school CS classes
didn’t actually find those classes.

[Dida2016] David Didau and Nick Rose. What Every Teacher Needs to
Know About Psychology. John Catt Educational, 2016. An
informative, opinionated explanation of what modern psychol-
ogy has to say about teaching.

[Douc2005] Christopher Douce, David Livingstone, and James Orwell.
Automatic test-based assessment of programming. Journal
on Educational Resources in Computing, 5(3):4–es, Sep 2005.
Reviews the state of auto-graders at the time.

[DuBo1986] Benedict Du Boulay. Some difficulties of learning to program.
Journal of Educational Computing Research, 2(1):57–73, Feb
1986. Introduces the idea of a notional machine.

[Edwa2014a] Stephen H. Edwards, Zalia Shams, and Craig Estep. Adap-
tively identifying non-terminating code when testing student
programs. In Proc. 2014 Technical Symposium on Computer
Science Education (SIGCSE’14). Association for Computing
Machinery (ACM), 2014. Describes an adaptive scheme for
detecting non-terminating student coding submissions.

[Edwa2014b] Stephen H. Edwards and Zalia Shams. Do student program-
mers all tend to write the same software tests? In Proc.
2014 Conference on Innovation and Technology in Computer
Science Education (ITiCSE’14). Association for Computing
Machinery (ACM), 2014. Reports that students wrote tests
for the happy path rather than to detect hidden bugs.

[Endr2014] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and
Andreas Stefik. How do API documentation and static typing
affect API usability? In Proc. 2014 International Conference
on Software Engineering (ICSE’14). ACM Press, 2014. Shows
that types do add complexity to programs, but it pays off fairly
quickly by acting as documentation hints for a method’s use.

[Ensm2003] Nathan L. Ensmenger. Letting the “computer boys” take over:
Technology and the politics of organizational transformation.
International Review of Social History, 48(S11):153–180, Dec
2003. Describes how programming was turned from a female
into a male profession in the 1960s.

[Ensm2012] Nathan L. Ensmenger. The Computer Boys Take Over: Com-
puters, Programmers, and the Politics of Technical Expertise.
MIT Press, 2012. Traces the emergence and rise of computer
experts in the 20th Century, and particularly the way that
computing became male-gendered.

206

[Eppl2006] Martin J. Eppler. A comparison between concept maps,
mind maps, conceptual diagrams, and visual metaphors
as complementary tools for knowledge construction and
sharing. Information Visualization, 5(3):202–210, Jun 2006.
Compares concept maps, mind maps, conceptual diagrams,
and visual metaphors as learning tools.

[Epst2002] Lewis Carroll Epstein. Thinking Physics: Understandable Prac-
tical Reality. Insight Press, 2002. An entertaining problem-
based introduction to thinking like a physicist.

[Eric2015] Barbara J. Ericson, Steven Moore, Briana B. Morrison, and
Mark Guzdial. Usability and usage of interactive features
in an online ebook for CS teachers. In Proc. 2015 Work-
shop in Primary and Secondary Computing Education (WiP-
SCE’15), pages 111–120. Association for Computing Machin-
ery (ACM), 2015. Reports that learners are more likely to
attempt Parsons Problems than nearby multiple choice ques-
tions in an ebook.

[Eric2016] K. Anders Ericsson. Summing up hours of any type of prac-
tice versus identifying optimal practice activities. Perspectives
on Psychological Science, 11(3):351–354, May 2016. A cri-
tique of a meta-study of deliberate practice based on the latter’s
overly-broad inclusion of activities.

[Eric2017] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick.
Solving Parsons Problems versus fixing and writing code. In
Proc. 2017 Koli Calling Conference on Computing Education
Research (Koli’17). Association for Computing Machinery
(ACM), 2017. Reports that solving 2D Parsons problems with
distractors takes less time than writing or fixing code but has
equivalent learning outcomes.

[Farm2006] Eugene Farmer. The gatekeeper’s guide, or how to kill a tool.
IEEE Software, 23(6):12–13, Nov 2006. Ten tongue-in-cheek
rules for making sure that a new software tool doesn’t get
adopted.

[Fehi2008] Chris Fehily. SQL: Visual QuickStart Guide. Peachpit Press,
third edition, 2008. An introduction to SQL that is both a
good tutorial and a good reference guide.

[Fell2001] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. How to Design Programs: An Intro-
duction to Programming and Computing. MIT Press, 2001.
An introduction to computing that focuses on the program
design process.

207

[Finc2007] Sally Fincher and Josh Tenenberg. Warren’s question. In Proc.
2007 International Computing Education Research Conference
(ICER’07). Association for Computing Machinery (ACM),
2007. A detailed look at a particular instance of transferring
a teaching practice.

[Finc2012] Sally Fincher, Brad Richards, Janet Finlay, Helen Sharp,
and Isobel Falconer. Stories of change: How educators
change their practice. In Proc. 2012 Frontiers in Education
Conference (FIE’12). Institute of Electrical and Electronics
Engineers (IEEE), Oct 2012. A detailed look at how educators
actually adopt new teaching practices.

[Fink2013] L. Dee Fink. Creating Significant Learning Experiences: An
Integrated Approach to Designing College Courses. Jossey-
Bass, 2013. A step-by-step guide to a systematic lesson design
process.

[Fisl2014] Kathi Fisler. The recurring rainfall problem. In Proc.
2014 International Computing Education Research Conference
(ICER’14). Association for Computing Machinery (ACM),
2014. Reports that students made fewer low-level errors when
solving the Rainfall Problem in a functional language.

[Fitz2008] Sue Fitzgerald, Gary Lewandowski, Renée McCauley, Laurie
Murphy, Beth Simon, Lynda Thomas, and Carol Zander.
Debugging: Finding, fixing and flailing, a multi-institutional
study of novice debuggers. Computer Science Education,
18(2):93–116, Jun 2008. Reports that good undergraduate
debuggers are good programmers but not necessarily vice versa,
and that novices use tracing and testing rather than causal
reasoning.

[Foge2005] Karl Fogel. Producing Open Source Software: How to Run a
Successful Free Software Project. O’Reilly Media, 2005. The
definite guide to managing open source software development
projects.

[Foor1998] Barbara R. Foorman, David J. Francis, Jack M. Fletcher,
Christopher Schatschneider, and Paras Mehta. The role of
instruction in learning to read: Preventing reading failure in
at-risk children. Journal of Educational Psychology, 90(1):37–
55, 1998. Reports that children learn to read faster when
taught with phonics rather than other approaches.

[Ford2016] Denae Ford, Justin Smith, Philip J. Guo, and Chris Parnin.
Paradise unplugged: Identifying barriers for female par-
ticipation on Stack Overflow. In Proc. 2016 International
Symposium on Foundations of Software Engineering (FSE’16).

208

Association for Computing Machinery (ACM), 2016. Reports
that lack of awareness of site features, feeling unqualified to
answer questions, intimidating community size, discomfort
interacting with or relying on strangers, and perception that
they shouldn’t be slacking were seen as significantly more prob-
lematic by female Stack Overflow contributors rather than
male ones.

[Fran2018] Pablo Frank-Bolton and Rahul Simha. Docendo discimus:
Students learn by teaching peers through video. In Proc.
2018 Technical Symposium on Computer Science Education
(SIGCSE’18). Association for Computing Machinery (ACM),
2018. Reports that students who make short videos to teach
concepts to their peers have a significant increase in their own
learning compared to those who only study the material or
view videos.

[Free1972] Jo Freeman. The tyranny of structurelessness. The Second
Wave, 2(1), 1972. Points out that every organization has a
power structure: the only question is whether it’s accountable
or not.

[Frie1995] Daniel P. Friedman and Matthias Felleisen. The Little
Schemer. MIT Press, fourth edition, 1995. An introduction to
programming using Scheme.

[Frie2016] Marilyn Friend and Lynne Cook. Interactions: Collaboration
Skills for School Professionals. Pearson, eighth edition, 2016.
A textbook on how teachers can work with other teachers.

[Galp2002] Vashti Galpin. Women in computing around the world.
ACM SIGCSE Bulletin, 34(2), Jun 2002. Looks at female
participation in computing in 35 countries.

[Gao2017] Zheng Gao, Christian Bird, and Earl T. Barr. To type or
not to type: Quantifying detectable bugs in JavaScript. In
Proc. 2017 International Conference on Software Engineering
(ICSE’17). Institute of Electrical and Electronics Engineers
(IEEE), May 2017. Reports that static typing would catch
about 15% of errors in JavaScript packages.

[Gauc2011] Danielle Gaucher, Justin Friesen, and Aaron C. Kay. Evidence
that gendered wording in job advertisements exists and
sustains gender inequality. Journal of Personality and Social
Psychology, 101(1):109–128, 2011. Reports that gendered
wording in job recruitment materials can maintain gender
inequality in traditionally male-dominated occupations.

[Gawa2007] Atul Gawande. The checklist. The New Yorker, Dec 2007.
Describes the life-saving effects of simple checklists.

209

[Gawa2011] Atul Gawande. Personal best. The New Yorker, Oct 2011.
Describes how having a coach can improve practice in a variety
of fields.

[Gelm2002] Andrew Gelman and Deborah Nolan. Teaching Statistics: A
Bag of Tricks. Oxford University Press, 2002. A collection of
tips and examples for teaching statistics.

[Gick1987] Mary L. Gick and Keith J. Holyoak. The cognitive basis of
knowledge transfer. In S. J. Cormier and J. D. Hagman,
editors, Transfer of Learning: Contemporary Research and Ap-
plications, pages 9–46. Elsevier, 1987. Finds that transference
only comes with mastery.

[Gorm2014] Cara Gormally, Mara Evans, and Peggy Brickman. Feedback
about teaching in higher ed: Neglected opportunities to
promote change. Cell Biology Education, 13(2):187–199, Jun
2014. Summarizes best practices for providing instructional
feedback, and recommends some specific strategies.

[Gree2014] Elizabeth Green. Building a Better Teacher: How Teaching
Works (and How to Teach It to Everyone). W. W. Norton &
Company, 2014. Explains why educational reforms in the past
fifty years has mostly missed the mark, and what we should
do instead.

[Grif2016] Jean M. Griffin. Learning by taking apart. In Proc. 2016
Conference on Information Technology Education (SIGITE’16).
ACM Press, 2016. Reports that people learn to program more
quickly by deconstructing code than by writing it.

[Grov2017] Shuchi Grover and Satabdi Basu. Measuring student learn-
ing in introductory block-based programming. In Proc.
2017 Technical Symposium on Computer Science Education
(SIGCSE’17). Association for Computing Machinery (ACM),
2017. Reports that middle-school children using blocks-based
programming find loops, variables, and Boolean operators
difficult to understand.

[Gull2004] Ned Gulley. In praise of tweaking. interactions, 11(3):18,
May 2004. Describes an innovative collaborative coding con-
test.

[Guo2013] Philip J. Guo. Online python tutor. In Proc. 2013 Technical
Symposium on Computer Science Education (SIGCSE’13). As-
sociation for Computing Machinery (ACM), 2013. Describes
the design and use of a web-based execution visualization tool.

[Guo2014] Philip J. Guo, Juho Kim, and Rob Rubin. How video produc-
tion affects student engagement. In Proc. 2014 Conference

210

on Learning @ Scale (L@S’14). Association for Computing
Machinery (ACM), 2014. Measured learner engagement with
MOOC videos and reports that short videos are more engaging
than long ones and that talking heads are more engaging than
tablet drawings.

[Guzd2013] Mark Guzdial. Exploring hypotheses about media compu-
tation. In Proc. 2013 International Computing Education
Research Conference (ICER’13). Association for Computing
Machinery (ACM), 2013. A look back on ten years of media
computation research.

[Guzd2015a] Mark Guzdial. Learner-Centered Design of Computing Ed-
ucation: Research on Computing for Everyone. Morgan &
Claypool Publishers, 2015. Argues that we must design com-
puting education for everyone, not just people who think they
are going to become professional programmers.

[Guzd2015b] Mark Guzdial. Top 10 myths about teaching computer sci-
ence. https://cacm.acm.org/blogs/blog-cacm/189498-top-
10-myths-about-teaching-computer-science/fulltext, 2015.
Ten things many people believe about teaching computing that
simply aren’t true.

[Guzd2016] Mark Guzdial. Five principles for programming lan-
guages for learners. https://cacm.acm.org/blogs/blog-
cacm/203554-five-principles-for-programming-languages-
for-learners/fulltext, 2016. Explains how to choose
a programming language for people who are new to
programming.

[Haar2017] Lassi Haaranen. Programming as a performance - live-
streaming and its implications for computer science educa-
tion. In Proc. 2017 Conference on Innovation and Technology
in Computer Science Education (ITiCSE’17). Association for
Computing Machinery (ACM), 2017. An early look at live
streaming of coding as a teaching technique.

[Hake1998] Richard R. Hake. Interactive engagement versus traditional
methods: A six-thousand-student survey of mechanics test
data for introductory physics courses. American Journal of
Physics, 66(1):64–74, Jan 1998. Reports the use of a concept
inventory to measure the benefits of interactive engagement as
a teaching technique.

[Hamo2017] Sally Hamouda, Stephen H. Edwards, Hicham G. Elmongui,
Jeremy V. Ernst, and Clifford A. Shaffer. A basic recursion

211

concept inventory. Computer Science Education, 27(2):121–
148, Apr 2017. Reports early work on developing a concept
inventory for recursion.

[Hank2011] Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie Mur-
phy, and Carol Zander. Pair programming in education: a
literature review. Computer Science Education, 21(2):135–
173, Jun 2011. Reports increased success rates and retention
with pair programming, with some evidence that it is par-
ticularly beneficial for women, but finds that scheduling and
partner compatibility can be problematic.

[Hann2009] Jo Erskine Hannay, Tore Dybå, Erik Arisholm, , and Dag I. K.
Sjøberg. The effectiveness of pair programming: A meta-
analysis. Information and Software Technology, 51(7):1110–
1122, Jul 2009. A comprehensive meta-analysis of research
on pair programming.

[Hann2010] Jo Erskine Hannay, Erik Arisholm, Harald Engvik, and Dag
I. K. Sjøberg. Effects of personality on pair programming.
IEEE Transactions on Software Engineering, 36(1):61–80,
Jan 2010. Reports weak correlation between the “Big Five”
personality traits and performance in pair programming.

[Hansen2015] John D. Hansen and Justin Reich. Democratizing education?
examining access and usage patterns in massive open online
courses. Science, 350(6265):1245–1248, Dec 2015. Reports
that MOOCs are mostly used by the affluent.

[Harm2016] Kyle James Harms, Jason Chen, and Caitlin L. Kelleher. Dis-
tractors in Parsons Problems decrease learning efficiency for
young novice programmers. In Proc. 2016 International Com-
puting Education Research Conference (ICER’16). Association
for Computing Machinery (ACM), 2016. Shows that adding
distractors to Parsons Problems does not improve learning
outcomes but increases solution times.

[Harr2018] Brian Harrington and Nick Cheng. Tracing vs. writing code:
Beyond the learning hierarchy. In Proc. 2018 Technical Sym-
posium on Computer Science Education (SIGCSE’18). Associa-
tion for Computing Machinery (ACM), 2018. Finds that the
gap between being able to trace code and being able to write it
has largely closed by CS2, and that students who still have a
gap (in either direction) are likely to do poorly in the course.

[Hazz2014] Orit Hazzan, Tami Lapidot, and Noa Ragonis. Guide to Teach-
ing Computer Science: An Activity-Based Approach. Springer,
second edition, 2014. A textbook for teaching computer sci-
ence at the K-12 level with dozens of activities.

212

[Hend2015a] Charles Henderson, Renée Cole, Jeff Froyd, Debra Friedrich-
sen, Raina Khatri, and Courtney Stanford. Designing Edu-
cational Innovations for Sustained Adoption. Increase the
Impact, 2015. A detailed analysis of strategies for getting
institutions in higher education to make changes.

[Hend2015b] Charles Henderson, Renée Cole, Jeff Froyd, Debra Friedrich-
sen, Raina Khatri, and Courtney Stanford. Designing edu-
cational innovations for sustained adoption (executive sum-
mary). http://www.increasetheimpact.com/resources.html,
2015. A short summary of key points from the authors’ work
on effecting change in higher education.

[Hend2017] Carl Hendrick and Robin Macpherson. What Does This Look
Like In The Classroom?: Bridging The Gap Between Research
And Practice. John Catt Educational, 2017. A collection of re-
sponses by educational experts to questions asked by classroom
teachers, with prefaces by the authors.

[Henr2010] Joseph Henrich, Steven J. Heine, and Ara Norenzayan. The
weirdest people in the world? Behavioral and Brain Sciences,
33(2-3):61–83, Jun 2010. Points out that the subjects of
most published psychological studies are Western, educated,
industrialized, rich, and democratic.

[Hest1992] David Hestenes, Malcolm Wells, and Gregg Swackhamer.
Force concept inventory. The Physics Teacher, 30(3):141–158,
Mar 1992. Describes the Force Concept Inventory’s motivation,
design, and impact.

[Hick2018] Marie Hicks. Programmed Inequality: How Britain Discarded
Women Technologists and Lost Its Edge in Computing. MIT
Press, 2018. Describes how Britain lost its early dominance in
computing by systematically discriminating against its most
qualified workers: women.

[Hofm2017] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt.
Shorter identifier names take longer to comprehend. In
Proc. 2017 Conference on Software Analysis, Evolution and
Reengineering (SANER’17). Institute of Electrical and Elec-
tronics Engineers (IEEE), Feb 2017. Reports that using words
for variable names makes comprehension faster than using
abbreviations or single-letter names for variables.

[Holl1960] Jack Hollingsworth. Automatic graders for programming
classes. Communications of the ACM, 3(10):528–529, Oct
1960. A brief note describing what may have been the world’s
first auto-grader.

213

[Hu2017] Helen H. Hu, Cecily Heiner, Thomas Gagne, and Carl Lyman.
Building a statewide computer science teacher pipeline. In
Proc. 2017 Technical Symposium on Computer Science Edu-
cation (SIGCSE’17). Association for Computing Machinery
(ACM), 2017. Reports that a six-month program for high
school teachers converting to teach CS quadruples the number
of teachers without noticeable reduction of student outcomes
and increases teachers’ belief that anyone can program.

[Hust2012] Therese Huston. Teaching What You Don’t Know. Harvard
University Press, 2012. A pointed, funny, and very useful
exploration of exactly what the title says.

[Ihan2010] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto
Seppälä. Review of recent systems for automatic assessment
of programming assignments. In Proc. 2010 Koli Calling
Conference on Computing Education Research (Koli’10). As-
sociation for Computing Machinery (ACM), 2010. Reviews
auto-grading tools of the time.

[Ihan2011] Petri Ihantola and Ville Karavirta. Two-dimensional Parson’s
Puzzles: The concept, tools, and first observations. Journal
of Information Technology Education: Innovations in Practice,
10:119–132, 2011. Describes a 2D Parsons Problem tool
and early experiences with it that confirm that experts solve
outside-in rather than line-by-line.

[Ihan2016] Petri Ihantola, Kelly Rivers, Miguel Ángel Rubio, Judy
Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
Daniel Toll, Arto Vihavainen, Alireza Ahadi, Matthew But-
ler, Jürgen Börstler, Stephen H. Edwards, Essi Isohanni, Ari
Korhonen, and Andrew Petersen. Educational data mining
and learning analytics in programming: Literature review
and case studies. In Proc. 2016 Conference on Innovation and
Technology in Computer Science Education (ITiCSE’16). Asso-
ciation for Computing Machinery (ACM), 2016. A survey of
methods used in mining and analyzing programming data.

[Ijss2000] Wijnand A. IJsselsteijn, Huib de Ridder, Jonathan Freeman,
and Steve E. Avons. Presence: Concept, determinants, and
measurement. In Bernice E. Rogowitz and Thrasyvoulos N.
Pappas, editors, Proc. 2000 Conference on Human Vision and
Electronic Imaging. SPIE, Jun 2000. Summarizes thinking of
the time about real and virtual presence.

[Irib2009] Alicia Iriberri and Gondy Leroy. A life-cycle perspective
on online community success. ACM Computing Surveys,

214

41(2):1–29, Feb 2009. Reviews research on online communi-
ties organized according to a five-stage lifecycle model.

[Juss2005] Lee Jussim and Kent D. Harber. Teacher expectations and
self-fulfilling prophecies: Knowns and unknowns, resolved
and unresolved controversies. Personality and Social Psychol-
ogy Review, 9(2):131–155, May 2005. A survey of the effects
of teacher expectations on student outcomes.

[Kaly2003] Slava Kalyuga, Paul Ayres, Paul Chandler, and John Sweller.
The expertise reversal effect. Educational Psychologist,
38(1):23–31, Mar 2003. Reports that instructional tech-
niques that work well with inexperienced learners lose their
effectiveness or have negative consequences when used with
more experienced learners.

[Kaly2015] Slava Kalyuga and Anne-Marie Singh. Rethinking the bound-
aries of cognitive load theory in complex learning. Educa-
tional Psychology Review, 28(4):831–852, Dec 2015. Ar-
gues that cognitive load theory is basically micro-management
within a broader pedagogical context.

[Kang2016] Sean H. K. Kang. Spaced repetition promotes efficient and
effective learning. Policy Insights from the Behavioral and
Brain Sciences, 3(1):12–19, Jan 2016. Summarizes research
on spaced repetition and what it means for classroom teaching.

[Kapu2016] Manu Kapur. Examining productive failure, productive
success, unproductive failure, and unproductive success in
learning. Educational Psychologist, 51(2):289–299, Apr 2016.
Looks at productive failure as an alternative to inquiry-based
learning and approaches based on cognitive load theory.

[Karp2008] Jeffrey D. Karpicke and Henry L. Roediger. The critical
importance of retrieval for learning. Science, 319(5865):966–
968, Feb 2008. Reports that repeated testing improves recall
of word lists from 35% to 80%, even when learners can still
access the material but are not tested on it.

[Kauf2000] Deborah B. Kaufman and Richard M. Felder. Accounting for
individual effort in cooperative learning teams. Journal of
Engineering Education, 89(2), 2000. Reports that self-rating
and peer ratings in undergraduate courses agree, that collusion
isn’t significant, that students don’t inflate their self-ratings,
and that ratings are not biased by gender or race.

[Keme2009] Chris F. Kemerer and Mark C. Paulk. The impact of design
and code reviews on software quality: An empirical study

215

based on PSP data. IEEE Transactions on Software Engineer-
ing, 35(4):534–550, Jul 2009. Uses individual data to explore
the effectiveness of code review.

[Kepp2008] Jeroen Keppens and David Hay. Concept map assessment for
teaching computer programming. Computer Science Educa-
tion, 18(1):31–42, Mar 2008. A short review of ways concept
mapping can be used in CS education.

[Kern1978] Brian W. Kernighan and P. J. Plauger. The Elements of Pro-
gramming Style. McGraw-Hill, second edition, 1978. An
early and influential description of the Unix programming
philosophy.

[Kern1983] Brian W. Kernighan and Rob Pike. The Unix Programming
Environment. Prentice-Hall, 1983. An influential early de-
scription of Unix.

[Kern1988] Brian W. Kernighan and Dennis M. Ritchie. The C Program-
ming Language. Prentice-Hall, second edition, 1988. The
book that made C a popular programming language.

[Kern1999] Brian W. Kernighan and Rob Pike. The Practice of Program-
ming. Addison-Wesley, 1999. A programming style manual
written by two of the creators of modern computing.

[Keun2016a] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. To-
wards a systematic review of automated feedback genera-
tion for programming exercises. In Proc. 2016 Conference
on Innovation and Technology in Computer Science Education
(ITiCSE’16). Association for Computing Machinery (ACM),
2016. Reports that auto-grading tools often do not give feed-
back on what to do next, and that teachers cannot easily adapt
most of the tools to their needs.

[Keun2016b] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. To-
wards a systematic review of automated feedback generation
for programming exercises - extended version. Technical Re-
port UU-CS-2016-001, Utrecht University, 2016. An extended
look at feedback messages from auto-grading tools.

[Kim2017] Ada S. Kim and Andrew J. Ko. A pedagogical analysis of
online coding tutorials. In Proc. 2017 Technical Symposium
on Computer Science Education (SIGCSE’17). Association for
Computing Machinery (ACM), 2017. Reports that online
coding tutorials largely teach similar content, organize content
bottom-up, and provide goal-directed practices with immediate
feedback, but are not tailored to learners’ prior coding knowl-
edge and usually don’t tell learners how to transfer and apply
knowledge.

216

[King1993] Alison King. From sage on the stage to guide on the side.
College Teaching, 41(1):30–35, Jan 1993. An early proposal
to flip the classroom.

[Kirk1994] Donald L. Kirkpatrick. Evaluating Training Programs: The
Four Levels. Berrett-Koehle, 1994. Defines a widely-used
four-level model for evaluating training.

[Kirs2006] Paul A. Kirschner, John Sweller, and Richard E. Clark. Why
minimal guidance during instruction does not work: An anal-
ysis of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching. Educational Psy-
chologist, 41(2):75–86, Jun 2006. Argues that inquiry-based
learning is less effective for novices than guided instruction.

[Kirs2013] Paul A. Kirschner and Jeroen J. G. van Merriënboer. Do
learners really know best? Urban legends in education.
Educational Psychologist, 48(3):169–183, Jul 2013. Argues
that three learning myths—digital natives, learning styles,
and self-educators—all reflect the mistaken belief that learners
know what is best for them, and cautions that we may be
in a downward spiral in which every attempt by education
researchers to rebut these myths confirms their opponents’
belief that learning science is pseudo-science.

[Kirs2018] Paul A. Kirschner, John Sweller, Femke Kirschner, and Jimmy
Zambrano R. From cognitive load theory to collaborative
cognitive load theory. International Journal of Computer-
Supported Collaborative Learning, Apr 2018. Extends cogni-
tive load theory to include collaborative aspects of learning.

[Koed2015] Kenneth R. Koedinger, Jihee Kim, Julianna Zhuxin Jia, Eliz-
abeth A. McLaughlin, and Norman L. Bier. Learning is not
a spectator sport: Doing is better than watching for learn-
ing from a mooc. In Proc. 2015 Conference on Learning
@ Scale (L@S’15). Association for Computing Machinery
(ACM), 2015. Measures the benefits of doing rather than
watching.

[Koeh2013] Matthew J. Koehler, Punya Mishra, and William Cain. What
is technological pedagogical content knowledge (TPACK)?
Journal of Education, 193(3):13–19, 2013. Refines the dis-
cussion of PCK by adding technology, and sketches strategies
for building understanding of how to use it.

[Kohn2017] Tobias Kohn. Variable evaluation: An exploration of novice
programmers’ understanding and common misconceptions.
In Proc. 2017 Technical Symposium on Computer Science Edu-
cation (SIGCSE’17). Association for Computing Machinery

217

(ACM), 2017. Reports that students often believe in delayed
evaluation or that entire equations are stored in variables.

[Koll2015] Michael Kölling. Lessons from the design of three edu-
cational programming environments. International Jour-
nal of People-Oriented Programming, 4(1):5–32, Jan 2015.
Compares three generations of programming environments
intended for novice use.

[Kran2015] Steven G. Krantz. How to Teach Mathematics. American
Mathematical Society (AMS), third edition, 2015. Advice
and opinions drawn from the author’s personal experience of
teaching mathematics.

[Krau2016] Robert E. Kraut and Paul Resnick. Building Successful Online
Communities: Evidence-Based Social Design. MIT Press, 2016.
Sums up what we actually know about making thriving online
communities and why we believe it’s true.

[Krug1999] Justin Kruger and David Dunning. Unskilled and unaware of
it: How difficulties in recognizing one’s own incompetence
lead to inflated self-assessments. Journal of Personality and
Social Psychology, 77(6):1121–1134, 1999. The original
report on the Dunning-Kruger effect: the less people know, the
less accurate their estimate of their knowledge.

[Kuch2011] Marc J. Kuchner. Marketing for Scientists: How to Shine in
Tough Times. Island Press, 2011. A short, readable guide to
making people aware of, and care about, your work.

[Kuit2004] Marja Kuittinen and Jorma Sajaniemi. Teaching roles of
variables in elementary programming courses. ACM SIGCSE
Bulletin, 36(3):57, Sep 2004. Presents a few patterns used
in novice programming and the pedagogical value of teaching
them.

[Kulk2013] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia,
Kathryn Papadopoulos, Justin Cheng, Daphne Koller, and
Scott R. Klemmer. Peer and self assessment in massive online
classes. ACM Transactions on Computer-Human Interaction,
20(6):1–31, Dec 2013. Shows that peer grading can be as
effective at scale as expert grading.

[Laba2008] David F. Labaree. The winning ways of a losing strategy:
Educationalizing social problems in the United States. Ed-
ucational Theory, 58(4):447–460, Nov 2008. Explores why
the United States keeps pushing the solution of social problems
onto educational institutions, and why that continues not to
work.

218

[Lach2018] Michael Lachney. Computational communities: African-
American cultural capital in computer science education.
Computer Science Education, pages 1–22, Feb 2018. Explores
use of community representation and computational integra-
tion to bridge computing and African-American cultural capital
in CS education.

[Lang2013] James M. Lang. Cheating Lessons: Learning from Academic
Dishonesty. Harvard University Press, 2013. Explores why
students cheat, and how courses often give them incentives to
do so.

[Lang2016] James M. Lang. Small Teaching: Everyday Lessons from the
Science of Learning. Jossey-Bass, 2016. Presents a selection
of accessible evidence-based practices that teachers can adopt
when they little time and few resources.

[Lazo1993] Ard W. Lazonder and Hans van der Meij. The minimal
manual: Is less really more? International Journal of Man-
Machine Studies, 39(5):729–752, Nov 1993. Reports that the
minimal manual approach to instruction outperforms tradi-
tional approaches regardless of prior experience with comput-
ers.

[Leak2017] Mackenzie Leake and Colleen M. Lewis. Recommendations
for designing CS resource sharing sites for all teachers. In
Proc. 2017 Technical Symposium on Computer Science Edu-
cation (SIGCSE’17). Association for Computing Machinery
(ACM), 2017. Explores why CS teachers don’t use resource
sharing sites and recommends ways to make them more ap-
pealing.

[Lee2013] Cynthia Bailey Lee. Experience report: CS1 in MATLAB for
non-majors, with media computation and peer instruction.
In Proc. 2013 Technical Symposium on Computer Science Edu-
cation (SIGCSE’13). Association for Computing Machinery
(ACM), 2013. Describes an adaptation of media computation
to a first-year MATLAB course.

[Lee2017] Cynthia Bailey Lee. What can i do today to create a more
inclusive community in CS? http://bit.ly/2oynmSH, 2017.
A practical checklist of things instructors can do to make their
computing classes more inclusive.

[Lemo2014] Doug Lemov. Teach Like a Champion 2.0: 62 Techniques
that Put Students on the Path to College. Jossey-Bass, 2014.
Presents 62 classroom techniques drawn from intensive study
of thousands of hours of video of good teachers in action.

219

[Lewi2015] Colleen M. Lewis and Niral Shah. How equity and inequity
can emerge in pair programming. In Proc. 2015 Interna-
tional Computing Education Research Conference (ICER’15).
Association for Computing Machinery (ACM), 2015. Reports
a study of pair programming in a middle-grade classroom in
which less equitable pairs were ones that sought to complete
the task quickly.

[List2004] Raymond Lister, Otto Seppälä, Beth Simon, Lynda Thomas,
Elizabeth S. Adams, Sue Fitzgerald, William Fone, John
Hamer, Morten Lindholm, Robert McCartney, Jan Erik
Moström, and Kate Sanders. A multi-national study of read-
ing and tracing skills in novice programmers. In Proc. 2004
Conference on Innovation and Technology in Computer Science
Education (ITiCSE’04). Association for Computing Machin-
ery (ACM), 2004. Reports that students are weak at both
predicting the outcome of executing a short piece of code and
at selecting the correct completion for short pieces of code.

[List2009] Raymond Lister, Colin Fidge, and Donna Teague. Further
evidence of a relationship between explaining, tracing and
writing skills in introductory programming. ACM SIGCSE
Bulletin, 41(3):161, Aug 2009. Replicates earlier studies
showing that students who cannot trace code usually cannot
explain code and that students who tend to perform reasonably
well at code writing tasks have also usually acquired the ability
to both trace code and explain code.

[Litt2004] Dennis Littky. The Big Picture: Education Is Everyone’s Busi-
ness. Association for Supervision & Curriculum Development
(ASCD), 2004. Essays on the purpose of education and how
to make schools better.

[Luxt2009] Andrew Luxton-Reilly. A systematic review of tools that
support peer assessment. Computer Science Education,
19(4):209–232, Dec 2009. Surveys peer assessment tools
that may be of use in computing education.

[Luxt2017] Andrew Luxton-Reilly, Jacqueline Whalley, Brett A. Becker,
Yingjun Cao, Roger McDermott, Claudio Mirolo, Andreas
Mühling, Andrew Petersen, Kate Sanders, and Simon. De-
veloping assessments to determine mastery of programming
fundamentals. In Proc. 2017 Conference on Innovation and
Technology in Computer Science Education (ITiCSE’17). Asso-
ciation for Computing Machinery (ACM), 2017. Synthesizes
work from many previous works to determine what CS instruc-
tors are actually teaching, how those things depend on each
other, and how they might be assessed.

220

[Macn2014] Brooke N. Macnamara, David Z. Hambrick, and Frederick L.
Oswald. Deliberate practice and performance in music,
games, sports, education, and professions: A meta-analysis.
Psychological Science, 25(8):1608–1618, Jul 2014. A meta-
study of the effectiveness of deliberate practice.

[Magu2018] Phil Maguire, Rebecca Maguire, and Robert Kelly. Using
automatic machine assessment to teach computer program-
ming. Computer Science Education, pages 1–18, Feb 2018.
Reports that weekly machine-evaluated tests are a better pre-
dictor of exam scores than labs (but that students didn’t like
the system).

[Majo2015] Claire Howell Major, Michael S. Harris, and Tod Zakrajsek.
Teaching for Learning: 101 Intentionally Designed Educational
Activities to Put Students on the Path to Success. Routledge,
2015. Catalogs a hundred different kinds of exercises to do
with students.

[Malo2010] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silver-
man, and Evelyn Eastmond. The Scratch programming
language and environment. ACM Transactions on Computing
Education, 10(4):1–15, Nov 2010. Summarizes the design of
the first generation of Scratch.

[Mann2015] Mary Lynn Manns and Linda Rising. Fearless Change: Pat-
terns for Introducing New Ideas. Addison-Wesley, 2015. A
catalog of patterns for making change happen in large organi-
zations.

[Marc2011] Guillaume Marceau, Kathi Fisler, and Shriram Krishna-
murthi. Measuring the effectiveness of error messages de-
signed for novice programmers. In Proc. 2011 Technical
Symposium on Computer Science Education (SIGCSE’11). As-
sociation for Computing Machinery (ACM), 2011. Looks at
edit-level responses to error messages, and introduces a useful
rubric for classifying user responses to errors.

[Marg2003] Jane Margolis and Allan Fisher. Unlocking the Clubhouse:
Women in Computing. MIT Press, 2003. A groundbreaking
report on the gender imbalance in computing, and the steps
Carnegie-Mellon took to address the problem.

[Marg2010] Jane Margolis, Rachel Estrella, Joanna Goode, Jennifer Jel-
lison Holme, and Kim Nao. Stuck in the Shallow End: Ed-
ucation, Race, and Computing. MIT Press, 2010. Dissects
the school structures and belief systems that lead to under-
representation of African American and Latinx students in
computing.

221

[Marg2012] Lauren E. Margulieux, Mark Guzdial, and Richard Catram-
bone. Subgoal-labeled instructional material improves per-
formance and transfer in learning to develop mobile appli-
cations. In Proc. 2012 International Computing Education
Research Conference (ICER’12), pages 71–78. ACM Press,
2012. Reports that labelled subgoals improve outcomes and
transference when learning about mobile app development.

[Marg2015] Anoush Margaryan, Manuela Bianco, and Allison Little-
john. Instructional quality of massive open online courses
(MOOCs). Computers & Education, 80:77–83, Jan 2015.
Reports that instructional design quality in MOOCs poor, but
that the organization and presentation of material is good.

[Marg2016] Lauren E. Margulieux, Richard Catrambone, and Mark Guz-
dial. Employing subgoals in computer programming educa-
tion. Computer Science Education, 26(1):44–67, Jan 2016.
Reports that labelled subgoals improve learning outcomes in
introductory computing courses.

[Mark2018] Rebecca A. Markovits and Yana Weinstein. Can cognitive pro-
cesses help explain the success of instructional techniques
recommended by behavior analysts? NPJ Science of Learning,
3(1), Jan 2018. Points out that behavioralists and cognitive
psychologists differ in approach, but wind up making very
similar recommendations about how to teach, and gives two
specific examples.

[Mars2002] Herbert W. Marsh and John Hattie. The relation between
research productivity and teaching effectiveness: Comple-
mentary, antagonistic, or independent constructs? Journal of
Higher Education, 73(5):603–641, 2002. One study of many
showing there is zero correlation between research ability and
teaching effectiveness.

[Mart2017] Christopher Martin, Janet Hughes, and John Richards.
Learning dimensions: Lessons from field studies. In Proc.
2017 Conference on Innovation and Technology in Computer
Science Education (ITiCSE’17). Association for Computing
Machinery (ACM), 2017. Outlines dimensions along which to
evaluate lessons.

[Masa2018] Susana Masapanta-Carrión and J. Ángel Velázquez-Iturbide.
A systematic review of the use of Bloom’s Taxonomy in com-
puter science education. In Proc. 2018 Technical Symposium
on Computer Science Education (SIGCSE’18). Association for
Computing Machinery (ACM), 2018. Reports that even expe-
rienced educators have trouble agreeing on the correct classifi-
cation for a question or idea using Bloom’s Taxonomy.

222

[Maso2016] Raina Mason, Carolyn Seton, and Graham Cooper. Ap-
plying cognitive load theory to the redesign of a conven-
tional database systems course. Computer Science Education,
26(1):68–87, Jan 2016. Reports how redesigning a database
course using cognitive load theory reduced exam failure rate
while increasing student satisfaction.

[Maye2003] Richard E. Mayer and Roxana Moreno. Nine ways to reduce
cognitive load in multimedia learning. Educational Psycholo-
gist, 38(1):43–52, Mar 2003. Shows how research into how
we absorb and process information can be applied to the design
of instructional materials.

[Maye2004] Richard E. Mayer. Teaching of subject matter. Annual Review
of Psychology, 55(1):715–744, Feb 2004. An overview of how
and why teaching and learning are subject-specific.

[Maye2009] Richard E. Mayer. Multimedia Learning. Cambridge Univer-
sity Press, second edition, 2009. Presents a cognitive theory
of multimedia learning.

[Mazu1996] Eric Mazur. Peer Instruction: A User’s Manual. Prentice-Hall,
1996. A guide to implementing peer instruction.

[McCa2008] Renée McCauley, Sue Fitzgerald, Gary Lewandowski, Lau-
rie Murphy, Beth Simon, Lynda Thomas, and Carol Zander.
Debugging: A review of the literature from an educational
perspective. Computer Science Education, 18(2):67–92, Jun
2008. Summarizes research about why bugs occur, why types
there are, how people debug, and whether we can teach debug-
ging skills.

[McCr2001] Michael McCracken, Tadeusz Wilusz, Vicki Almstrum, Danny
Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Ko-
likant, Cary Laxer, Lynda Thomas, and Ian Utting. A multi-
national, multi-institutional study of assessment of program-
ming skills of first-year CS students. In Proc. 2001 Conference
on Innovation and Technology in Computer Science Education
(ITiCSE’01). Association for Computing Machinery (ACM),
2001. Reports that most students still struggle to solve even
basic programming problems at the end of their introductory
course.

[McDo2006] Charlie McDowell, Linda Werner, Heather E. Bullock, and
Julian Fernald. Pair programming improves student reten-
tion, confidence, and program quality. Communications of
the ACM, 49(8):90–95, Aug 2006. A summary of research
showing that pair programming improves retention and confi-
dence.

223

[McGu2015] Saundra Yancey McGuire. Teach Students How to Learn:
Strategies You Can Incorporate Into Any Course to Improve
Student Metacognition, Study Skills, and Motivation. Stylus
Publishing, 2015. Explains how metacognitive strategies can
improve learning.

[McMi2017] Tressie McMillan Cottom. Lower Ed: The Troubling Rise of
For-Profit Colleges in the New Economy. The New Press, 2017.
Lays bare the dynamics of the growing educational industry to
show how it leads to greater inequality rather than less.

[McTi2013] Jay McTighe and Grant Wiggins. Un-
derstanding by design framework.
http://www.ascd.org/ASCD/pdf/siteASCD/publications/UbD_WhitePaper0312.pdf,
2013. Summarizes the backward instructional design process.

[Metc2016] Janet Metcalfe. Learning from errors. Annual Review of
Psychology, 68(1):465–489, Jan 2016. Summarizes work on
the hypercorrection effect in learning.

[Meys2018] Mark Meysenburg, Tessa Durham Brooks, Raychelle Burks,
Erin Doyle, and Timothy Frey. DIVAS: Outreach to the natu-
ral sciences through image processing. In Proc. 2018 Techni-
cal Symposium on Computer Science Education (SIGCSE’18).
Association for Computing Machinery (ACM), 2018. De-
scribes early results from a programming course for science
undergrads built around image processing.

[Midw2010] Midwest Academy. Organizing for Social Change: Midwest
Academy Manual for Activists. The Forum Press, fourth edi-
tion, 2010. A training manual for people building progressive
social movements.

[Mill1956] George A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, 63(2):81–97, 1956. The original paper
on the limited size of short-term memory.

[Mill2013] Kelly Miller, Nathaniel Lasry, Kelvin Chu, and Eric Mazur.
Role of physics lecture demonstrations in conceptual learn-
ing. Physical Review Special Topics - Physics Education Re-
search, 9(2), Sep 2013. Reports a detailed study of what
students learn during demonstrations and why.

[Mill2015] David I. Miller and Jonathan Wai. The bachelor’s to ph.d.
STEM pipeline no longer leaks more women than men: a
30-year analysis. Frontiers in Psychology, 6, Feb 2015. Shows
that the “leaky pipeline” metaphor stopped being accurate
some time in the 1990s.

224

[Mill2016a] Michelle D. Miller. Minds Online: Teaching Effectively with
Technology. Harvard University Press, 2016. Describes ways
that insights from neuroscience can be used to improve online
teaching.

[Mill2016b] Craig S. Miller and Amber Settle. Some trouble with trans-
parency: An analysis of student errors with object-oriented
Python. In Proc. 2016 International Computing Education
Research Conference (ICER’16). Association for Computing
Machinery (ACM), 2016. Reports that students have difficulty
with self in Python.

[Milt2018] Kate M. Miltner. Girls who coded: Gender in twentieth
century U.K. and U.S. computing. Science, Technology, &
Human Values, May 2018. A review of three books about how
women were systematically pushed out of computing.

[Miya2018] Toshiya Miyatsu, Khuyen Nguyen, and Mark A. McDaniel.
Five popular study strategies: Their pitfalls and optimal
implementations. Perspectives on Psychological Science,
13(3):390–407, May 2018. Explains how learners mis-use
common study strategies and what they should do instead.

[Mlad2017] Monika Mladenović, Ivica Boljat, and Žana Žanko. Com-
paring loops misconceptions in block-based and text-based
programming languages at the K-12 level. Education and
Information Technologies, Nov 2017. Reports that K-12 stu-
dents have fewer misconceptions about loops using Scratch
than using Logo or Python, and fewer misconceptions about
nested loops with Logo than with Python.

[Morr2016] Briana B. Morrison, Lauren E. Margulieux, Barbara J. Eric-
son, and Mark Guzdial. Subgoals help students solve Parsons
Problems. In Proc. 2016 Technical Symposium on Computer
Science Education (SIGCSE’16). Association for Computing
Machinery (ACM), 2016. Reports that students using labelled
subgoals solve Parsons Problems better than students without
labelled subgoals.

[Muel2014] Pam A. Mueller and Daniel M. Oppenheimer. The pen
is mightier than the keyboard. Psychological Science,
25(6):1159–1168, Apr 2014. Presents evidence that tak-
ing notes by hand is more effective than taking notes on a
laptop.

[Muhl2016] Andreas Mühling. Aggregating concept map data to inves-
tigate the knowledge of beginning CS students. Computer
Science Education, 26(2-3):176–191, Jul 2016. Analyzed

225

concepts maps drawing by students with prior CS experience
and those without to compare their mental models.

[Mull2007a] Derek A. Muller, James Bewes, Manjula D. Sharma, and
Peter Reimann. Saying the wrong thing: Improving learn-
ing with multimedia by including misconceptions. Journal
of Computer Assisted Learning, 24(2):144–155, Jul 2007.
Reports that including explicit discussion of misconceptions
significantly improves learning outcomes: students with low
prior knowledge benefit most and students with more prior
knowledge are not disadvantaged.

[Mull2007b] Orna Muller, David Ginat, and Bruria Haberman. Pattern-
oriented instruction and its influence on problem decom-
position and solution construction. In Proc. 2007 Technical
Symposium on Computer Science Education (SIGCSE’07). As-
sociation for Computing Machinery (ACM), 2007. Reports
that explicitly teaching solution patterns improves learning
outcomes.

[Murp2008] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth
Simon, Lynda Thomas, and Carol Zander. Debugging: The
good, the bad, and the quirky - a qualitative analysis of
novices’ strategies. ACM SIGCSE Bulletin, 40(1):163, Feb
2008. Reports that many CS1 students use good debugging
strategies, but many others don’t, and students often don’t
recognize when they are stuck.

[Nara2018] Sathya Narayanan, Kathryn Cunningham, Sonia Arteaga,
William J. Welch, Leslie Maxwell, Zechariah Chawinga, and
Bude Su. Upward mobility for underrepresented students.
In Proc. 2018 Technical Symposium on Computer Science Edu-
cation (SIGCSE’18). Association for Computing Machinery
(ACM), 2018. Describes an intensive 3-year bachelor’s pro-
gram based on tight-knit cohorts and administrative support
that tripled graduation rates.

[Nath2003] Mitchell J. Nathan and Anthony Petrosino. Expert blind spot
among preservice teachers. American Educational Research
Journal, 40(4):905–928, Jan 2003. Early work on expert
blind spot.

[Nils2017] Linda B. Nilson and Ludwika A. Goodson. Online Teaching
at Its Best: Merging Instructional Design with Teaching and
Learning Research. Jossey-Bass, 2017. A guide for college
instructors that focuses on online teaching.

[Nord2017] Emily Nordmann, Colin Calder, Paul Bishop, Amy Irwin,
and Darren Comber. Turn up, tune in, don’t drop out:

226

The relationship between lecture attendance, use of lec-
ture recordings, and achievement at different levels of study.
https://psyarxiv.com/fd3yj, 2017. Reports on the pros and
cons of recording lectures.

[Nutb2016] Stephen Nutbrown and Colin Higgins. Static analysis of pro-
gramming exercises: Fairness, usefulness and a method for
application. Computer Science Education, 26(2-3):104–128,
May 2016. Describes ways auto-grader rules were modified
and grades weighted to improve correlation between automatic
feedback and manual grades.

[Nuth2007] Graham Nuthall. The Hidden Lives of Learners. NZCER Press,
2007. Summarizes a lifetime of work looking at what students
actually do in classrooms and how they actually learn.

[Ojos2015] Bobby Ojose. Common Misconceptions in Mathematics:
Strategies to Correct Them. UPA, 2015. A catalog of K-12
misconceptions in mathematics and what to do about them.

[Ornd2015] Harold N. Orndorff III. Collaborative note-taking: The im-
pact of cloud computing on classroom performance. Interna-
tional Journal of Teaching and Learning in Higher Education,
27(3):340–351, 2015. Reports that taking notes together
online is more effective than solo note-taking.

[Pape1993] Seymour A. Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, second edition, 1993. The
foundational text on how computers can underpin a new kind
of education.

[Pare2008] Dwayne E. Paré and Steve Joordens. Peering into large lec-
tures: Examining peer and expert mark agreement using
peerScholar, an online peer assessment tool. Journal of Com-
puter Assisted Learning, 24(6):526–540, Oct 2008. Shows
that peer grading by small groups can be as effective as expert
grading once accountability features are introduced.

[Park2015] Thomas H. Park, Brian Dorn, and Andrea Forte. An analy-
sis of HTML and CSS syntax errors in a web development
course. ACM Transactions on Computing Education, 15(1):1–
21, Mar 2015. Describes the errors students make in an
introductory course on HTML and CSS.

[Park2016] Miranda C. Parker, Mark Guzdial, and Shelly Engleman.
Replication, validation, and use of a language independent
CS1 knowledge assessment. In Proc. 2016 International
Computing Education Research Conference (ICER’16). Asso-
ciation for Computing Machinery (ACM), 2016. Describes

227

construction and replication of a second concept inventory for
basic computing knowledge.

[Parn1986] David Lorge Parnas and Paul C. Clements. A rational design
process: How and why to fake it. IEEE Transactions on
Software Engineering, SE-12(2):251–257, Feb 1986. Argues
that using a rational design process is less important than
looking as though you had.

[Parn2017] Chris Parnin, Janet Siegmund, and Norman Peitek. On the
nature of programmer expertise. In Psychology of Program-
ming Interest Group Workshop 2017, 2017. An annotated
exploration of what “expertise” means in programming.

[Pars2006] Dale Parsons and Patricia Haden. Parson’s programming puz-
zles: A fun and effective learning tool for first programming
courses. In Proc. 2006 Australasian Conference on Computing
Education (ACE’06), pages 157–163. Australian Computer
Society, 2006. The first description of Parson’s Problems.

[Pati2016] Elizabeth Patitsas, Jesse Berlin, Michelle Craig, and Steve
Easterbrook. Evidence that computer science grades are not
bimodal. In Proc. 2016 International Computing Education
Research Conference (ICER’16). Association for Computing
Machinery (ACM), 2016. Presents a statistical analysis and
an experiment which jointly show that grades in computing
classes are not bimodal.

[Pea1986] Roy D. Pea. Language-independent conceptual “bugs” in
novice programming. Journal of Educational Computing
Research, 2(1):25–36, Feb 1986. First named the "superbug"
in coding: most newcomers think the computer understands
what they want, in the same way that a human being would.

[Pete2017] John Peterson and Greg Haynes. Integrating computer sci-
ence into music education. In Proc. 2017 Technical Sympo-
sium on Computer Science Education (SIGCSE’17). Associa-
tion for Computing Machinery (ACM), 2017. Describes a DSL
for music composition that can be used to introduce coding
ideas into introductory music classes.

[Petr2016] Marian Petre and André van der Hoek. Software Design
Decoded: 66 Ways Experts Think. MIT Press, 2016. A short
illustrated overview of how expert software developers think.

[Pign2016] Alessandra Pigni. The Idealist’s Survival Kit: 75 Simple Ways
to Prevent Burnout. Parallax Press, 2016. A guide to staying
sane and healthy while doing good.

228

[Port2013] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Si-
mon. Success in introductory programming: What works?
Communications of the ACM, 56(8):34, Aug 2013. Summa-
rizes the evidence that peer instruction, media computation,
and pair programming can significantly improve outcomes in
introductory programming courses.

[Port2016] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom,
Cynthia Bailey Lee, Robert McCartney, Daniel Zingaro, and
Beth Simon. A multi-institutional study of peer instruction in
introductory computing. In Proc. 2016 Technical Symposium
on Computer Science Education (SIGCSE’16). Association for
Computing Machinery (ACM), 2016. Reports that students
in introductory programming classes value peer instruction,
and that it improves learning outcomes.

[Qian2017] Yizhou Qian and James Lehman. Students’ misconceptions
and other difficulties in introductory programming. ACM
Transactions on Computing Education, 18(1):1–24, Oct 2017.
Summarizes research on student misconceptions about com-
puting.

[Rago2017] Noa Ragonis and Ronit Shmallo. On the (mis)understanding
of the “this” reference. In Proc. 2017 Technical Symposium
on Computer Science Education (SIGCSE’17). Association for
Computing Machinery (ACM), 2017. Reports that most stu-
dents do not understood when to use this, and that teachers
are also often not clear on the subject.

[Raws2014] Katherine A. Rawson, Ruthann C. Thomas, and Larry L. Ja-
coby. The power of examples: Illustrative examples enhance
conceptual learning of declarative concepts. Educational
Psychology Review, 27(3):483–504, Jun 2014. Reports that
presenting examples helps students understand definitions, so
long as examples and definitions are interleaved.

[Ray2014] Eric J. Ray and Deborah S. Ray. Unix and Linux: Visual
QuickStart Guide. Peachpit Press, fifth edition, 2014. An
introduction to Unix that is both a good tutorial and a good
reference guide.

[Rice2018] Gail Taylor Rice. Hitting Pause: 65 Lecture Breaks to Refresh
and Reinforce Learning. Stylus Publishing, 2018. Justifies
and catalogs ways to take a pause in class to help learning.

[Rich2017] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski,
Cheryl Moran, and Diana Franklin. K-8 learning trajectories
derived from research literature. In Proc. 2017 International

229

Computing Education Research Conference (ICER’17). Asso-
ciation for Computing Machinery (ACM), 2017. Presents
learning trajectories for K-8 computing classes for Sequence,
Repetition, and Conditions gleaned from the literature.

[Ritz2018] Anna Ritz. Programming the central dogma: An integrated
unit on computer science and molecular biology concepts.
In Proc. 2018 Technical Symposium on Computer Science Edu-
cation (SIGCSE’18). Association for Computing Machinery
(ACM), 2018. Describes an introductory computing course for
biologists whose problems are drawn from the DNA-to-protein
processes in cells.

[Robe2017] Eric Roberts. Assessing and responding
to the growth of computer science under-
graduate enrollments: Annotated findings.
cs.stanford.edu/people/eroberts/ResourcesForTheCSCapacityCrisis/files/AnnotatedFindings.pptx,
2017. Summarizes findings from a National Academies study
about computer science enrollments.

[Robi2005] Evan Robinson. Why crunch mode doesn’t work: 6 lessons.
http://www.igda.org/articles/erobinson_crunch.php, 2005.
Summarizes research on the effects of overwork and sleep
deprivation.

[Rohrer2015] Doug Rohrer, Robert F. Dedrick, and Sandra Stershic. Inter-
leaved practice improves mathematics learning. Journal of
Educational Psychology, 107(3):900–908, 2015. Reports that
interleaved practice is more effective than monotonous practice
when learning.

[Rubi2013] Marc J. Rubin. The effectiveness of live-coding to teach intro-
ductory programming. In Proc. 2013 Technical Symposium
on Computer Science Education (SIGCSE’13), pages 651–656.
Association for Computing Machinery (ACM), 2013. Reports
that live coding is as good as or better than using static code
examples.

[Rubi2014] Manuel Rubio-Sánchez, Päivi Kinnunen, Cristóbal Pareja-
Flores, and J. Ángel Velázquez-Iturbide. Student perception
and usage of an automated programming assessment tool.
Computers in Human Behavior, 31:453–460, Feb 2014. De-
scribes use of an auto-grader for student assignments.

[Saja2006] Jorma Sajaniemi, Mordechai Ben-Ari, Pauli Byckling, Petri
Gerdt, and Yevgeniya Kulikova. Roles of variables in
three programming paradigms. Computer Science Education,
16(4):261–279, Dec 2006. A detailed look at the authors’
work on roles of variables.

230

[Sala2017] Giovanni Sala and Fernand Gobet. Does far transfer ex-
ist? Negative evidence from chess, music, and working
memory training. Current Directions in Psychological Science,
26(6):515–520, Oct 2017. A meta-analysis showing that far
transfer rarely occurs.

[Sand2013] Kate Sanders, Jaime Spacco, Marzieh Ahmadzadeh, Tony
Clear, Stephen H. Edwards, Mikey Goldweber, Chris John-
son, Raymond Lister, Robert McCartney, and Elizabeth Patit-
sas. The Canterbury QuestionBank: Building a repository
of multiple-choice CS1 and CS2 questions. In Proc. 2013
Conference on Innovation and Technology in Computer Science
Education (ITiCSE’13). Association for Computing Machin-
ery (ACM), 2013. Describes development of a shared question
bank for introductory CS, and patterns for multiple choice
questions that emerged from entries.

[Scaf2017] Christopher Scaffidi. Workers who use spreadsheets and who
program earn more than similar workers who do neither.
In Proc. 2017 Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’17). Institute of Electrical and
Electronics Engineers (IEEE), 2017. Reports that workers
who aren’t software developers but who program make higher
wages than comparable workers who do not.

[Scan1989] David A. Scanlan. Structured flowcharts outperform pseu-
docode: An experimental comparison. IEEE Software,
6(5):28–36, Sep 1989. Reports that students understand
flowcharts better than pseudocode if both are equally well
structured.

[Scho1984] Donald A. Schön. The Reflective Practitioner: How Profession-
als Think In Action. Basic Books, 1984. A groundbreaking
look at how professionals in different fields actually solve prob-
lems.

[Scot1998] James C. Scott. Seeing Like a State: How Certain Schemes to
Improve the Human Condition Have Failed. Yale University
Press, 1998. Argues that large organizations consistently
prefer uniformity over productivity.

[Sent2018] Sue Sentance, Erik Barendsen, and Carsten Schulte, editors.
Computer Science Education: Perspectives on Teaching and
Learning in School. Bloomsbury Press, 2018. A collection of
academic survey articles on teaching computing.

[Sepp2015] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and
Arto Vihavainen. Do we know how difficult the Rainfall

231

Problem is? In Proc. 2015 Koli Calling Conference on Com-
puting Education Research (Koli’15). ACM Press, 2015. A
meta-study of the Rainfall Problem.

[Shap2007] Jenessa R. Shapiro and Steven L. Neuberg. From stereo-
type threat to stereotype threats: Implications of a multi-
threat framework for causes, moderators, mediators, conse-
quences, and interventions. Personality and Social Psychology
Review, 11(2):107–130, MAY 2007. Explores the ways the
term “stereotype threat” has been used.

[Shel2017] Duane F. Shell, Leen-Kiat Soh, Abraham E. Flanigan,
Markeya S. Peteranetz, and Elizabeth Ingraham. Improv-
ing students’ learning and achievement in CS classrooms
through computational creativity exercises that integrate
computational and creative thinking. In Proc. 2017 Techni-
cal Symposium on Computer Science Education (SIGCSE’17).
Association for Computing Machinery (ACM), 2017. Reports
that having students work in small groups on computational
creativity exercises improves learning outcomes.

[Simo2013] Simon. Soloway’s Rainfall Problem has become harder. In
Proc. 2013 Conference on Learning and Teaching in Comput-
ing and Engineering. Institute of Electrical and Electronics
Engineers (IEEE), Mar 2013. Argues that the Rainfall Prob-
lem is harder for novices than it used to be because they’re not
used to handling keyboard input, so direct comparison with
past results may be unfair.

[Sirk2012] Teemu Sirkiä and Juha Sorva. Exploring programming mis-
conceptions: An analysis of student mistakes in visual pro-
gram simulation exercises. In Proc. 2012 Koli Calling Confer-
ence on Computing Education Research (Koli’12). Association
for Computing Machinery (ACM), 2012. Analyzes data from
student use of an execution visualization tool and classifies
common mistakes.

[Sisk2018] Victoria F. Sisk, Alexander P. Burgoyne, Jingze Sun, Jen-
nifer L. Butler, and Brooke N. Macnamara. To what ex-
tent and under which circumstances are growth mind-sets
important to academic achievement? Two meta-analyses.
Psychological Science, page 095679761773970, Mar 2018.
Reports meta-analyses of the relationship between mind-set
and academic achievement, and the effectiveness of mind-set
interventions on academic achievement, and finds that overall
effects are weak for both, but some results support specific
tenets of the theory.

232

[Skud2014] Ben Skudder and Andrew Luxton-Reilly. Worked examples
in computer science. In Proc. 2014 Australasian Computing
Education Conference, (ACE’14), 2014. A summary of research
on worked examples as applied to computing education.

[Smar2018] Benjamin L. Smarr and Aaron E. Schirmer. 3.4 million
real-world learning management system logins reveal the
majority of students experience social jet lag correlated with
decreased performance. Scientific Reports, 8(1), Mar 2018.
Reports that students who have to work outside their natural
body clock cycle do less well.

[Smit2009] Michelle K. Smith, William B. Wood, Wendy K. Adams,
Carl E. Wieman, Jennifer K. Knight, N. Guild, and T. T.
Su. Why peer discussion improves student performance on
in-class concept questions. Science, 323(5910):122–124, Jan
2009. Reports that student understanding increases during
discussion in peer instruction, even when none of the students
in the group initially know the right answer.

[Solo1984] Elliot Soloway and Kate Ehrlich. Empirical studies of pro-
gramming knowledge. IEEE Transactions on Software Engi-
neering, SE-10(5):595–609, Sep 1984. Proposes that experts
have programming plans and rules of programming discourse.

[Solo1986] Elliot Soloway. Learning to program = learning to construct
mechanisms and explanations. Communications of the ACM,
29(9):850–858, Sep 1986. Analyzes programming in terms of
choosing appropriate goals and constructing plans to achieve
them, and introduces the Rainfall Problem.

[Sond2012] Harald Søndergaard and Raoul A. Mulder. Collaborative
learning through formative peer review: Pedagogy, programs
and potential. Computer Science Education, 22(4):343–367,
Dec 2012. Surveys literature on student peer assessment,
distinguishing grading and reviewing as separate forms, and
summarizes features a good peer review system needs to have.

[Sorv2013] Juha Sorva. Notional machines and introductory program-
ming education. ACM Transactions on Computing Education,
13(2):1–31, Jun 2013. Reviews literature on programming
misconceptions, and argues that instructors should address
notional machines as an explicit learning objective.

[Sorv2014] Juha Sorva and Otto Seppälä. Research-based design of the
first weeks of CS1. In Proc. 2014 Koli Calling Conference
on Computing Education Research (Koli’14). Association for
Computing Machinery (ACM), 2014. Proposes three cogni-
tively plausible frameworks for the design of a first CS course.

233

[Sorv2018] Juha Sorva. Misconceptions and the beginner programmer.
In Sue Sentance, Erik Barendsen, and Carsten Schulte, ed-
itors, Computer Science Education: Perspectives on Teaching
and Learning in School. Bloomsbury Press, 2018. Summa-
rizes what we know about what novices misunderstand about
computing.

[Spal2014] Dan Spalding. How to Teach Adults: Plan Your Class, Teach
Your Students, Change the World. Jossey-Bass, 2014. A short
guide to teaching adult free-range learners informed by the
author’s social activism.

[Spoh1985] James C. Spohrer, Elliot Soloway, and Edgar Pope. A
goal/plan analysis of buggy Pascal programs. Human-
Computer Interaction, 1(2):163–207, Jun 1985. One of the
first cognitively plausible analyses of how people program,
which proposes a goal/plan model.

[Srid2016] Sumukh Sridhara, Brian Hou, Jeffrey Lu, and John DeNero.
Fuzz testing projects in massive courses. In Proc. 2016
Conference on Learning @ Scale (L@S’16). Association for
Computing Machinery (ACM), 2016. Reports that fuzz testing
student code catches errors that are missed by handwritten test
suite, and explains how to safely share tests and results.

[Stam2013] Eliane Stampfer and Kenneth R. Koedinger. When seeing
isn’t believing: Influences of prior conceptions and miscon-
ceptions. In Proc. 2013 Annual Meeting of the Cognitive
Science Society (CogSci’13), 2013. Explores why giving chil-
dren more information when they are learning about fractions
can lower their performance.

[Stam2014] Eliane Stampfer Wiese and Kenneth R. Koedinger. Investi-
gating scaffolds for sense making in fraction addition and
comparison. In Proc. 2014 Annual Conference of the Cognitive
Science Society (CogSci’14), 2014. Looks at how to scaffold
learning of fraction operations.

[Star2014] Philip Stark and Richard Freishtat. An evaluation of course
evaluations. ScienceOpen Research, Sep 2014. Yet another
demonstration that teaching evaluations don’t correlate with
learning outcomes, and that they are frequently statistically
suspect.

[Stas1998] John Stasko, John Domingue, Mark H. Brown, and Blaine A.
Price, editors. Software Visualization: Programming as a
Multimedia Experience. MIT Press, 1998. A survey of program
and algorithm visualization techniques and results.

234

[Stee2011] Claude M. Steele. Whistling Vivaldi: How Stereotypes Af-
fect Us and What We Can Do. W. W. Norton & Company,
2011. Explains and explores stereotype threat and strategies
for addressing it.

[Stef2013] Andreas Stefik and Susanna Siebert. An empirical investiga-
tion into programming language syntax. ACM Transactions
on Computing Education, 13(4):1–40, Nov 2013. Reports
that curly-brace languages are as hard to learn as a language
with randomly-designed syntax, but others are easier.

[Stef2017] Andreas Stefik, Patrick Daleiden, Diana Franklin, Stefan
Hanenberg, Antti-Juhani Kaijanaho, Walter Tichy, and
Brett A. Becker. Programming languages and learning.
https://quorumlanguage.com/evidence.html, 2017. Sum-
marizes what we actually know about designing programming
languages and why we believe it’s true.

[Steg2014] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. To-
wards an empirically validated model for assessment of code
quality. In Proc. 2014 Koli Calling Conference on Comput-
ing Education Research (Koli’14). Association for Computing
Machinery (ACM), 2014. Presents a code quality rubric for
novice programming courses.

[Steg2016a] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. De-
signing a rubric for feedback on code quality in program-
ming courses. In Proc. 2016 Koli Calling Conference on Com-
puting Education Research (Koli’16). Association for Comput-
ing Machinery (ACM), 2016. Describes several iterations of a
code quality rubric for novice programming courses.

[Steg2016b] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers.
Rubric for feedback on code quality in programming courses.
http://stgm.nl/quality, 2016. Presents a code quality rubric
for novice programming.

[Stoc2018] Jean Stockard, Timothy W. Wood, Cristy Coughlin, and
Caitlin Rasplica Khoury. The effectiveness of direct instruc-
tion curricula: A meta-analysis of a half century of research.
Review of Educational Research, page 003465431775191, Jan
2018. A meta-analysis that finds significant positive benefit
for Direct Instruction.

[Sung2012] Eunmo Sung and Richard E. Mayer. When graphics improve
liking but not learning from online lessons. Computers in
Human Behavior, 28(5):1618–1625, Sep 2012. Reports that
students who receive any kind of graphics give significantly

235

higher satisfaction ratings than those who don’t, but only stu-
dents who get instructive graphics perform better than groups
that get no graphics, seductive graphics, or decorative graphics.

[Sved2016] Maria Svedin and Olle Bälter. Gender neutrality improved
completion rate for all. Computer Science Education, 26(2-
3):192–207, Jul 2016. Reports that redesigning an online
course to be gender neutral improves completion probability
in general, but decreases it for students with a superficial
approach to learning.

[Tedr2008] Matti Tedre and Erkki Sutinen. Three traditions of com-
puting: What educators should know. Computer Science
Education, 18(3):153–170, Sep 2008. Summarizes the his-
tory and views of three traditions in computing: mathematical,
scientific, and engineering.

[Tew2011] Allison Elliott Tew and Mark Guzdial. The FCS1: A lan-
guage independent assessment of CS1 knowledge. In Proc.
2011 Technical Symposium on Computer Science Education
(SIGCSE’11). Association for Computing Machinery (ACM),
2011. Describes development and validation of a language-
independent assessment instrument for CS1 knowledge.

[Thay2017] Kyle Thayer and Andrew J. Ko. Barriers faced by coding
bootcamp students. In Proc. 2017 International Computing
Education Research Conference (ICER’17). Association for
Computing Machinery (ACM), 2017. Reports that coding
bootcamps are sometimes useful, but quality is varied, and
formal and informal barriers to employment remain.

[Ubel2017] Robert Ubell. How the pioneers of the MOOC got
it wrong. http://spectrum.ieee.org/tech-talk/at-
work/education/how-the-pioneers-of-the-mooc-got-it-
wrong, 2017. A brief exploration of why MOOCs haven’t lived
up to initial hype.

[Urba2014] David R. Urbach, Anand Govindarajan, Refik Saskin, An-
drew S. Wilton, and Nancy N. Baxter. Introduction of surgi-
cal safety checklists in ontario, canada. New England Journal
of Medicine, 370(11):1029–1038, Mar 2014. Reports a study
showing that the introduction of surgical checklists did not
have a significant effect on operative outcomes.

[Utti2013] Ian Utting, Juha Sorva, Tadeusz Wilusz, Allison Elliott Tew,
Michael McCracken, Lynda Thomas, Dennis Bouvier, Roger
Frye, James Paterson, Michael E. Caspersen, and Yifat Ben-
David Kolikant. A fresh look at novice programmers’ per-
formance and their teachers’ expectations. In Proc. 2013

236

Conference on Innovation and Technology in Computer Sci-
ence Education (ITiCSE’13). ACM Press, 2013. Replicates an
earlier study showing how little students learn in their first
programming course.

[Uttl2017] Bob Uttl, Carmela A. White, and Daniela Wong Gonzalez.
Meta-analysis of faculty’s teaching effectiveness: Student
evaluation of teaching ratings and student learning are not
related. Studies in Educational Evaluation, 54:22–42, Sep
2017. Summarizes studies showing that how students rate a
course and how much they actually learn are not related.

[Varm2015] Roli Varma and Deepak Kapur. Decoding femininity in
computer science in india. Communications of the ACM,
58(5):56–62, apr 2015. Reports female participation in com-
puting in India.

[Vell2017] Mickey Vellukunnel, Philip Buffum, Kristy Elizabeth Boyer,
Jeffrey Forbes, Sarah Heckman, and Ketan Mayer-Patel. De-
constructing the discussion forum: Student questions and
computer science learning. In Proc. 2017 Technical Sympo-
sium on Computer Science Education (SIGCSE’17). Associa-
tion for Computing Machinery (ACM), 2017. Found that
students mostly ask constructivist and logistical questions in
forums, and that the former correlate with grades.

[Viha2014] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson.
A systematic review of approaches for teaching introduc-
tory programming and their influence on success. In Proc.
2014 International Computing Education Research Conference
(ICER’14). Association for Computing Machinery (ACM),
2014. Consolidates studies of CS1-level teaching changes and
finds media computation the most effective, while introducing
a game theme is the least effective.

[Wall2009] Thorbjorn Walle and Jo Erskine Hannay. Personality and the
nature of collaboration in pair programming. In Proc. 2009
International Symposium on Empirical Software Engineering
and Measurement (ESER’09). Institute of Electrical and Elec-
tronics Engineers (IEEE), Oct 2009. Reports that pairs with
different levels of a given personality trait communicated more
intensively.

[Wang2018] April Y. Wang, Ryan Mitts, Philip J. Guo, and Parmit K.
Chilana. Mismatch of expectations: How modern learning
resources fail conversational programmers. In Proc. 2018
Conference on Human Factors in Computing Systems (CHI’18).
Association for Computing Machinery (ACM), 2018. Reports

237

that learning resources don’t really help conversational pro-
grammers (those who learn coding to take part in technical
discussions).

[Ward2015] James Ward. Adventures in Stationery: A Journey Through
Your Pencil Case. Profile Books, 2015. A wonderful look at the
everyday items that would be in your desk drawer if someone
hadn’t walked off with them.

[Wats2014] Christopher Watson and Frederick W. B. Li. Failure rates
in introductory programming revisited. In Proc. 2014 Con-
ference on Innovation and Technology in Computer Science
Education (ITiCSE’14). Association for Computing Machin-
ery (ACM), 2014. A larger version of an earlier study that
found an average of one third of students fail CS1.

[Watt2014] Audrey Watters. The Monsters of Education Technology. Cre-
ateSpace, 2014. A collection of essays about the history of
educational technology and the exaggerated claims repeatedly
made for it.

[Wein2017a] David Weintrop and Nathan Holbert. From blocks to text
and back: Programming patterns in a dual-modality envi-
ronment. In Proc. 2017 Technical Symposium on Computer
Science Education (SIGCSE’17). Association for Computing
Machinery (ACM), 2017. Reports that students using a dual-
mode blocks and text coding environment tend to migrate from
blocks to text over time, and that two thirds of the shifts from
text to blocks were followed by adding a new type of command.

[Wein2017b] David Weintrop and Uri Wilensky. Comparing block-based
and text-based programming in high school computer sci-
ence classrooms. ACM Transactions on Computing Education,
18(1):1–25, Oct 2017. Reports that students learn faster and
better with blocks than with text.

[Wein2018] Yana Weinstein, Christopher R. Madan, and Megan A. Sumer-
acki. Teaching the science of learning. Cognitive Research:
Principles and Implications, 3(1), Jan 2018. A tutorial review
of six evidence-based learning practices.

[Weng2015] Etienne Wenger-Trayner and Beverly Wenger-Trayner. Com-
munities of practice: A brief introduction. http://wenger-
trayner.com/intro-to-cops/, 2015. A brief summary of what
communities of practice are and aren’t.

[Wibu2016] Karin Wiburg, Julia Parra, Gaspard Mucundanyi, Jennifer
Green, and Nate Shaver, editors. The Little Book of Learning
Theories. CreateSpace, second edition, 2016. Presents brief
summaries of various theories of learning.

238

[Wigg2005] Grant Wiggins and Jay McTighe. Understanding by De-
sign. Association for Supervision & Curriculum Development
(ASCD), 2005. A lengthy presentation of reverse instructional
design.

[Wilc2018] Chris Wilcox and Albert Lionelle. Quantifying the benefits
of prior programming experience in an introductory com-
puter science course. In Proc. 2018 Technical Symposium
on Computer Science Education (SIGCSE’18). Association for
Computing Machinery (ACM), 2018. Reports that students
with prior experience outscore students without in CS1, but
there is no significant difference in performance by the end
of CS2; also finds that female students with prior exposure
outperform their male peers in all areas, but are consistently
less confident in their abilities.

[Wilk2011] Richard Wilkinson and Kate Pickett. The Spirit Level: Why
Greater Equality Makes Societies Stronger. Bloomsbury Press,
2011. Presents evidence that inequality harms everyone, both
economically and otherwise.

[Will2010] Daniel T. Willingham. Why Don’t Students Like School?: A
Cognitive Scientist Answers Questions about How the Mind
Works and What It Means for the Classroom. Jossey-Bass,
2010. A cognitive scientist looks at how the mind works in the
classroom.

[Wils2007] Karen Wilson and James H. Korn. Attention during lectures:
Beyond ten minutes. Teaching of Psychology, 34(2):85–89,
Jun 2007. Reports little support for the claim that students
only have a 10–15 minute attention span (though there is lots
of individual variation).

[Wils2016] Greg Wilson. Software Carpentry: Lessons learned.
F1000Research, Jan 2016. A history and analysis of Soft-
ware Carpentry.

[Wlod2017] Raymond J. Wlodkowski and Margery B. Ginsberg. Enhanc-
ing Adult Motivation to Learn: A Comprehensive Guide for
Teaching All Adults. Jossey-Bass, 2017. The standard reference
for understanding adult motivation.

[Yada2016] Aman Yadav, Sarah Gretter, Susanne Hambrusch, and Phil
Sands. Expanding computer science education in schools:
Understanding teacher experiences and challenges. Com-
puter Science Education, 26(4):235–254, Dec 2016. Summa-
rizes feedback from K-12 teachers on what they need by way
of preparation and support.

239

[Yang2015] Yu-Fen Yang and Yuan-Yu Lin. Online collaborative note-
taking strategies to foster EFL beginners’ literacy develop-
ment. System, 52:127–138, Aug 2015. Reports that students
using collaborative note taking when learning English as a
foreign language do better than those who don’t.

240

Part V

Additional Material

241

A License

This is a human-readable summary of (and not a substitute for) the license.
Please see https://creativecommons.org/licenses/by/4.0/legalcode for the full
legal text.

This work is licensed under the Creative Commons Attribution 4.0 Inter-
national license (CC-BY-4.0).

You are free to:

• Share—copy and redistribute the material in any medium or format
• Remix—remix, transform, and build upon the material for any purpose,

even commercially.

The licensor cannot revoke these freedoms as long as you follow the license
terms.

Under the following terms:

• Attribution—You must give appropriate credit, provide a link to the
license, and indicate if changes were made. You may do so in any rea-
sonable manner, but not in any way that suggests the licensor endorses
you or your use.

• No additional restrictions—You may not apply legal terms or techno-
logical measures that legally restrict others from doing anything the
license permits.

Notices:

You do not have to comply with the license for elements of the material in
the public domain or where your use is permitted by an applicable exception
or limitation.

No warranties are given. The license may not give you all of the permis-
sions necessary for your intended use. For example, other rights such as
publicity, privacy, or moral rights may limit how you use the material.

243

https://creativecommons.org/licenses/by/4.0/legalcode

B Citation

Please cite this work as:

Greg Wilson (ed.): Teaching Tech Together. Lulu.com, 2018, 978-0-
9881137-0-1, http://teachtogether.tech/.

245

http://teachtogether.tech/

C Joining Our Community

This appendix describes how you can become part of our community by
using, sharing, and improving this material.

C.1 Contributor Covenant

The contributor covenant laid out below governs contributions to this book.
It is adapted from the Contributor Covenant1 version 1.4; please see Ap-
pendix D for a sample code of conduct for use in classes and other learning
situations.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project
and our community a harassment-free experience for everyone, regard-
less of age, body size, disability, ethnicity, gender identity and expression,
level of experience, education, socioeconomic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

• Using welcoming and inclusive language
• Being respectful of differing viewpoints and experiences
• Gracefully accepting constructive criticism
• Focusing on what is best for the community
• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

1https://www.contributor-covenant.org

247

https://www.contributor-covenant.org

• The use of sexualized language or imagery and unwelcome sexual atten-
tion or advances

• Trolling, insulting/derogatory comments, and personal or political at-
tacks

• Public or private harassment
• Publishing others’ private information, such as a physical or electronic

address, without explicit permission
• Other conduct which could reasonably be considered inappropriate in a

professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this covenant, or to ban temporarily or permanently
any contributor for other behaviors that they deem inappropriate, threaten-
ing, offensive, or harmful.

Scope

This covenant applies both within project spaces and in public spaces when
an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-
mail address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior
may be reported by contacting the project team at [gvwilson@third-
bit.com](mailto:gvwilson@third-bit.com). All complaints will be reviewed
and investigated and will result in a response that is deemed necessary and
appropriate to the circumstances. The project team is obligated to maintain
confidentiality with regard to the reporter of an incident. Further details of
specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the covenant in good
faith may face temporary or permanent repercussions as determined by
other members of the project’s leadership.

248

C.2 Using This Material

This material has been used in many ways, from a multi-week online class
to an intensive in-person workshop. It’s usually possible to cover large parts
of Chapters 2–6, Chapter 8, and Chapter 10 in two long days.

In Person

This is the most effective way to deliver this training, but also the most
demanding. Participants are physically together. When they need to practice
teaching in small groups, some or all of them go to nearby breakout spaces.
Participants use their own tablets or laptops to view online material during
the class and for shared note-taking (Section 9.7), and use pen and paper or
whiteboards for other exercises. Questions and discussion are done aloud.

If you are teaching in this format, you should use sticky notes as status
flags so that you can see who needs help, who has questions, and who’s ready
to move on (Section 9.8.1). You should also use them to distribute attention
so that everyone gets a fair share of the instructor’s time (Section 9.8.2),
and as minute cards to encourage learners to reflect on what they’ve just
learned and to give you actionable feedback while you still have time to act
on it (Section 9.8.3).

Online in Groups

In this format, 10–40 learners are together in 2–6 groups of 4–12, but those
groups are geographically distributed. Each group uses one camera and
microphone to connect to the video call, rather than each person being on
the call separately. We have found that having good audio matters more
than having good video, and that the better the audio, the more learners
can communicate with the instructor and other rooms by voice rather than
via text online.

The entire class does shared note-taking together, and also uses the
shared notes for asking and answering questions. (Having several dozen
people try to talk on a call works poorly, so in most sessions, the instructor
does the talking and learners respond through the note-taking tool’s chat.)

Online as Individuals

The natural extension of being online in groups is to be online as individ-
uals. As with online groups, the instructor will do most of the talking and
learners will mostly participate via text chat. Good audio is once again more
important than good video, and participants should use text chat to signal
that they want to speak next (Appendix F).

249

Having participants online individually makes it more difficult to draw
and share concept maps (Section 3.5) or give feedback on teaching (Sec-
tion 8.5). Instructors should therefore rely more on exercises with written
results that can be put in the shared notes, such as giving feedback on stock
videos of people teaching.

Multi-Week Online

This was the first format used, and I no longer recommend it: while spread-
ing the class out gives people time to reflect and tackle larger exercises, it
also greatly increases the odds that they’ll have to drop out because of other
demands on their time.

The class meets every week for an hour via video conferencing. Each
meeting may be held twice to accommodate learners’ time zones and sched-
ules. Participants use shared note-taking as described above for online
group classes, post homework online between classes, and comment on each
other’s work. (In practice, comments are relatively rare: people strongly
prefer to discuss material in the weekly meetings.)

C.3 Contributing and Maintaining

This book is a community resource: contributions of all kinds are welcome,
from suggestions for improvements to errata and new material. All contribu-
tors must abide by the contributor covenant presented above; by submitting
your work, you are agreeing that it may incorporated in either original
or edited form and release it under the same license as the rest of this
material (Appendix A). If your material is incorporated, we will add you to
the acknowledgments (Section 1.6) unless you request otherwise.

• The source for this book is stored on GitHub at https://github.com/
gvwilson/teachtogether.tech. If you know how to use Git and GitHub
and would like to change, fix, or add something, please submit a pull
request that modifies the LaTeX source in the tex directory. If you
would like to preview your changes, please read the instructions in the
BUILD.md file in the root directory of the project.

• If you simply want to report an error, ask a question, or make a sugges-
tion, please file an issue at https://github.com/gvwilson/teachtogether.
tech. You need to have a GitHub account in order to do this, but do not
need to know how to use Git.

• If you do not wish to create a GitHub account, please email your contri-
bution to mailto:gvwilson@third-bit.com with either “T3” or “Teaching
Tech Together” somewhere in the subject line.. We will try to respond
within a week.

250

https://github.com/gvwilson/teachtogether.tech
https://github.com/gvwilson/teachtogether.tech
https://github.com/gvwilson/teachtogether.tech
https://github.com/gvwilson/teachtogether.tech
mailto:gvwilson@third-bit.com

Please note that we also welcome improvements to our build process,
tooling, and typography, and are always grateful for more diagrams; please
see the file BUILD.md in the root directory of the book’s GitHub repository
at https://github.com/gvwilson/teachtogether.tech for more information.
Finally, we always enjoy hearing how people have used this material: please
let us know if you have a story you would like to share.

A Teaching Commons

Section 13.4 defined a commons as something managed jointly by a com-
munity according to rules they themselves have evolved and adopted. Open
source software and Wikipedia are both successful examples; the question
is, why don’t teachers build lessons collaboratively in the same way? People
have proposed a variety of reasons2, but I don’t think any of them hold up
to close scrutiny3.

Software Carpentry4 is proof by implementation that a teaching com-
mons can produce and maintain high-quality lessons that hundreds of people
can use [Wils2016]. I hope you will choose to help us do the same for this
book. If you are new to working this way:

Start small. Fix a typo, clarify the wording of an exercise, correct or update
a citation, or suggest a better example or analogy to illustrate some point.

Join the conversation. Have a look at the issues and proposed changes
that other people have already filed and add your comments to them. It’s
often possible to improve improvements, and it’s a good way to introduce
yourself to the community and make new friends. (To make this as easy
as possible, we tag some issues and proposed changes as “Suitable for
Newcomers” or “Help Wanted”.)

Discuss, then edit. If you want to propose a large change, such as reorga-
nizing or splitting an entire chapter, please file an issue that outlines your
proposal and your reasoning and tag it with “Proposal”. We encourage
everyone to add comments to these issues so that the whole discussion
of what and why is in the open and can be archived. If the proposal is
accepted, the actual work may then be broken down into several smaller
issues or changes that can be tackled independently.

2http://blog.mrmeyer.com/2016/why-secondary-teachers-dont-want-a-github-for-lesson-
plans/
3http://third-bit.com/2016/04/29/why-teachers-dont-collaborate.html
4http://software-carpentry.org

251

https://github.com/gvwilson/teachtogether.tech
http://blog.mrmeyer.com/2016/why-secondary-teachers-dont-want-a-github-for-lesson-plans/
http://blog.mrmeyer.com/2016/why-secondary-teachers-dont-want-a-github-for-lesson-plans/
http://third-bit.com/2016/04/29/why-teachers-dont-collaborate.html
http://software-carpentry.org

D Code of Conduct

Context

This code of conduct is based on the template written by the Ada
Initiative and hosted on the Geek Feminism Wikia. We recommend
that every online or in-person event adopt something like it, with the
contact information filled in appropriately. Please see Section C.1 for
the covenant governing contributions to this material.
ahttp://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy

We are dedicated to providing a harassment-free learning experience
for everyone, regardless of gender, sexual orientation, disability, physical
appearance, body size, race, or religion. We do not tolerate harassment
in any form, including offensive communication, sexual images in public
spaces, deliberate intimidation, stalking, following, harassing photography
or recording, sustained disruption of talks or other events, inappropriate
physical contact, or unwelcome sexual attention.

Be kind to others. Do not insult or put down other attendees. Behave
professionally. Remember that sexist, racist, or exclusionary jokes are not
appropriate.

People asked to stop any harassing behavior are expected to comply im-
mediately. Anyone violating these rules may be asked to leave the classroom
at the sole discretion of the instructors.

If you believe someone is violating the Code of Conduct we ask that you
report it by emailing ADDRESS, or if the violation occurs during a workshop
or other in-person event, by contacting the host directly at PHONE/TEXT.
All reports will be kept confidential.

Thank you for helping make this a welcoming, friendly event for all.

253

http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy

E Glossary

Absolute beginner Someone who has never encountered concepts or ma-
terial before. The term is used in distinction to false beginner.

Agile development An approach to software development that emphasizes
short iterations, incremental delivery, and close collaboration between
customers and developers.

Authentic task A task which contains important elements of things that
learners would do in real (non-classroom situations). To be authentic, a
task should require learners to construct their own answers rather than
choose between provided answers, and to work with the same tools and
data they would use in real life.

Automaticity The ability to do a task without concentrating on its low-level
details.

Backward design An instructional design method that works backwards
from a summative assessment to formative assessments and thence to
lesson content.

Behaviorism A theory of learning whose central principle is stimulus and
response, and whose goal is to explain behavior without recourse to
internal mental states or other unobservables. See also cognitivism.

Bloom’s Taxonomy A six-part hierarchical classification of understand
whose levels are knowledge, comprehension, application, analysis, synthesis,
and evaluation that has been widely adopted. See also Fink’s Taxonomy.

Branch coverage The degree to which a set of tests exercise all possible
branches of control structures like if/else statements.

Brand The associations people have with a product’s name or identity.
Calibrated peer review Having students compare their reviews of sample

work with an instructor’s reviews before being allowed to review their
peers’ work.

Chunking The act of grouping related concepts together so that they can
be stored and processed as a single unit.

Co-teaching Teaching with another instructor in the classroom.
Cognitive apprenticeship A theory of learning that emphasizes the process

of a master passing on skills and insights situationally to an apprentice.

255

Cognitive Load Theory Cognitive load is the amount of mental effort re-
quired to solve a problem. Cognitive load theory divides this effort into
intrinsic, extraneous, and germane, and holds that people learn faster and
better when extraneous load is reduced.

Cognitivism A theory of learning that holds that mental states and pro-
cesses can and must be included in models of learning. See also behavior-
ism.

Community of practice A self-perpetuating group of people who share and
develop a craft such as knitters, musicians, or programmers. See also
legitimate peripheral participation.

Community representation Using cultural capital to highlight students’
social identities, histories, and community networks in learning activities.

Computational integration Using computing to re-implement pre-existing
cultural artifacts, e.g., creating variants of traditional designs using com-
puter drawing tools.

Competent practitioner Someone who can do normal tasks with normal
effort under normal circumstances. See also novice and expert.

Computational thinking Thinking about problem-solving in ways inspired
by programming (though the term is used in many other ways).

Concept map A picture of a mental model in which concepts are nodes in
a graph and relationships are (labelled) arcs.

Connectivism A theory of learning holds that knowledge is distributed, that
learning is the process of navigating, growing, and pruning connections,
and which emphasizes the social aspects of learning made possible by the
Internet

Constructivism A theory of learning that views learners as actively con-
structing knowledge.

Content knowledge A person’s understanding of a subject. See also general
pedagogical knowledge and pedagogical content knowledge.

Contributing student pedagogy Having students produce artifacts to con-
tribute to other students’ learning.

Conversational programmer Someone who needs to know enough about
computing to have a meaningful conversation with a programmer, but
isn’t going to program themselves.

CS0 An introductory college-level course on computing aimed at non-
majors with little or no prior experience of programming.

CS1 An introductory college-level computer science course, typically one
semester long, that focuses on variables, loops, functions, and other basic
mechanics.

CS2 A second college-level computer science course that typically intro-
duces basic data structures such as stacks, queues, and dictionaries.

Deficit model The idea that some groups are under-represented in comput-
ing (or some other field) because their members lack some attribute or
quality.

256

Deliberate practice The act of observing performance of a task while doing
it in order to improve ability.

Demonstration lesson A staged lesson in which one teacher presents ma-
terial to a class of actual students while other teachers observe in order to
learn new teaching techniques.

Diagnostic power The degree to which a wrong answer to a question or
exercise tells the instructor what misconceptions a particular learner has.

Direct instruction A teaching method centered around meticulous curricu-
lum design delivered through prescribed script.

Educational psychology The study of how people learn. See also instruc-
tional design.

Ego depletion The impairment of self control that occurs when it is exer-
cised intensively or for long periods.

Elevator pitch A short description of an idea, project, product, or person
that can be delivered and understood in just a few seconds.

End-user programmer Someone who does not consider themselves a pro-
grammer, but who nevertheless writes and debugs software, such as an
artist creating complex macros for a drawing tool.

End-user teacher By analogy with end-user programmer, someone who is
teaching frequently, but whose primary occupation is not teaching, who
has little or no background in pedagogy, and who may work outside
institutional classrooms.

Expert Someone who can diagnose and handle unusual situations, knows
when the usual rules do not apply, and tends to recognize solutions rather
than reasoning to them. See also competent practitioner and novice.

Expert blind spot The inability of experts to empathize with novices who
are encountering concepts or practices for the first time.

Expertise reversal effect The way in which instruction that is effective for
novices becomes ineffective for competent practitioners or experts.

Externalized cognition The use of graphical, physical, or verbal aids to
augment thinking.

Extrinsic motivation Being driven by external rewards such as payment or
fear of punishment. See also intrinsic motivation.

Faded example A series of examples in which a steadily increasing number
of key steps are blanked out. See also scaffolding.

False beginner Someone who has studied a language before but is learning
it again. False beginners start at the same point as true beginners (i.e., a
pre-test will show the same proficiency) but can move much more quickly.

Far Transfer Transfer of learning or proficiency between widely-separated
domains, e.g., improvement in math skills as a result of playing chess.

Fink’s Taxonomy A six-part non-hierarchical classification of understand-
ing first proposed in [Fink2013] whose categories are foundational knowl-
edge, application, integration, human dimension, caring, and learning how
to learn. See also Bloom’s Taxonomy.

257

Fixed mindset The belief that an ability is innate, and that failure is due to
a lack of some necessary attribute. See also growth mindset.

Flipped classroom One in which learners watch recorded lessons on their
own time, while class time is used to work through problem sets and
answer questions.

Flow The feeling of being fully immersed in an activity; frequently associ-
ated with high productivity.

Fluid representation The ability to move quickly between different models
of a problem.

Formative assessment Assessment that takes place during a lesson in order
to give both the learner and the instructor feedback on actual understand-
ing. See also summative assessment.

Free-range learner Someone learning outside an institutional classrooms
with required homework and mandated curriculum. (Those who use
the term occasionally refer to students in classrooms as “battery-farmed
learners”, but we don’t, because that would be rude.)

Functional programming A style of programming in which data structures
cannot be modified once they have been created, and in which functions
that operate on other functions are widely used for abstraction.

Fuzz testing A software testing technique based on generating and submit-
ting random data.

General pedagogical knowledge A person’s understanding of the general
principles of teaching. See also content knowledge and pedagogical content
knowledge.

Growth mindset The belief that ability comes with practice. See also fixed
mindset.

Guided notes Instructor-prepared notes that cue students to respond to
key information in a lecture or discussion.

Hashing Generating a condensed pseudo-random digital key from data;
any specific input produces the same output, but different inputs are
highly likely to produce different outputs.

Hypercorrection effect The more strongly someone believed that their
answer on a test was right, the more likely they are not to repeat the error
once they discover that in fact they were wrong.

Implementation science The study of how to translate research findings
to everyday clinical practice.

Impostor syndrome A feeling of insecurity about one’s accomplishments
that manifests as a fear of being exposed as a fraud.

Inclusivity Working actively to include people with diverse backgrounds
and needs.

Inquiry-based learning The practice of allowing learners to ask their own
questions, set their own goals, and find their own path through a subject.

Instructional design The craft of creating and evaluating specific lessons
for specific audiences. See also educational psychology.

258

Intrinsic motivation Being driven by enjoyment of a task or the satisfaction
of doing it for its own sake. See also extrinsic motivation.

Jugyokenkyu Literally “lesson study”, a set of practices that includes hav-
ing teachers routinely observe one another and discuss lessons to share
knowledge and improve skills.

Lateral knowledge transfer The “accidental” transfer of knowledge that
occurs when an instructor is teaching one thing, and the learner picks up
another.

Learned helplessness A situation in which people who are repeatedly sub-
jected to negative feedback that they have no way to escape learn not to
even try to escape when they could.

Learner persona A brief description of a typical target learner for a lesson
that includes their general background, what they already know, what
they want to do, how the lesson will help them, and any special needs
they might have.

Learning objective What a lesson is trying to achieve.
Learning outcome What a lesson actually achieves.
Legitimate peripheral participation Newcomers’ participation in simple,

low-risk tasks that a community of practice recognizes as valid contribu-
tions.

Live coding The act of teaching programming by writing software in front
of learners as the lesson progresses.

Long-term memory The part of memory that stores information for long
periods of time. Long-term memory is very large, but slow. See also
short-term memory.

Marketing The craft of seeing things from other people’s perspective, un-
derstanding their wants and needs, and finding ways to meet them

Mental model A simplified representation of the key elements and relation-
ships of some problem domain that is good enough to support problem
solving.

Metacognition Thinking about thinking.
Minute cards A feedback technique in which learners spend a minute writ-

ing one positive thing about a lesson (e.g., one thing they’ve learned) and
one negative thing (e.g., a question that still hasn’t been answered).

Near transfer Transfer of learning or proficiency between closely-related
domains, e.g., improvement in understanding of decimals as a result of
doing exercises with fractions.

Notional machine A general, simplified model of how a particular family
of programs executes.

Novice Someone who has not yet built a usable mental model of a domain.
See also competent practitioner and expert.

Pair programming A software development practice in which two pro-
grammers share one computer. One programmer (the driver) does the
typing, while the other (the navigator) offers comments and suggestions
in real time. Pair programming is often used as a teaching practice in
programming classes.

259

Parsons Problem An assessment technique developed by Dale Parsons and
others in which learners rearrange given material to construct a correct
answer to a question.

Pedagogical content knowledge (PCK) The understanding of how to
teach a particular subject, i.e., the best order in which to introduce
topics and what examples to use. See also content knowledge and general
pedagogical knowledge.

Peer instruction A teaching method in which an instructor poses a question
and then students commit to a first answer, discuss answers with their
peers, and commit to a (revised) answer.

Persistent memory see long-term memory.
Personalized learning Automatically tailoring lessons to meet the needs

of individual students.
Plausible distractor A wrong or less-than-best answer to a multiple-choice

question that looks like it could be right. See also diagnostic power.
Positioning What sets one brand apart from other, similar brands.
Preparatory privilege The advantage of coming from a background that

provides more preparation for a particular learning task than others.
Pull request A set of proposed changes to a GitHub repository that can be

reviewed, updated, and eventually merged.
Read-cover-retrieve A study practice in which the learner covers up key

facts or terms during a first pass through material, then checks their recall
on a second pass.

Reflecting listening The practice of paraphrasing a speaker’s point back to
them immediately after hearing it in order to confirm understanding.

Reflective practice see deliberate practice.
Scaffolding Extra material provided to early-stage learners to help them

solve problems.
Short-term memory The part of memory that briefly stores information

that can be directly accessed by consciousness.
Situated learning A model of learning that focuses on people’s transition

from being newcomers to be accepted members of a community of practice.
Split-attention effect The decrease in learning that occurs when learners

must divide their attention between multiple concurrent presentations of
the same information (e.g., captions and a voiceover).

Stereotype threat A situation in which people feel that they are at risk of
being held to stereotypes of their social group.

Subgoal labelling Giving names to the steps in a step-by-step description
of a problem-solving process.

Summative assessment Assessment that takes place at the end of a lesson
to tell whether the desired learning has taken place.

Tangible artifact Something a learner can work on whose state gives feed-
back about the learner’s progress and helps the learner diagnose mistakes.

260

Test-driven development A software development practice in which pro-
grammers write tests first in order to give themselves concrete goals and
clarify their understanding of what “done” looks like.

Think-pair-share A collaboration method in which each person thinks
individually about a question or problem, then pairs with a partner to
pool ideas, and then have one person from each pair present to the whole
group.

Transfer-appropriate processing The improvement in recall that occurs
when practice uses activities similar to those used in testing.

Twitch coding Having a group of people decide moment by moment or
line by line what to add to a program next.

Understanding by design see backward design.
Working memory see short-term memory.

261

F Meetings, Meetings, Meetings

Most people are really bad at meetings: they don’t have an agenda going
in, they don’t take minutes, they waffle on or wander off into irrelevancies,
they repeat what others have said or recite banalities simply so that they’ll
have said something, and they hold side conversations (which pretty much
guarantees that the meeting will be a waste of time). Knowing how to
run a meeting efficiently is a core skill for anyone who wants to get things
done. (Knowing how to take part in someone else’s meeting is just as
important, but gets far less attention—as a colleague once said, everyone
offers leadership training, nobody offers followership training.) The most
important rules for making meetings efficient are not secret, but are rarely
followed:

Decide if there actually needs to be a meeting. If the only purpose is to
share information, have everyone send a brief email instead. Remember,
you can read faster than anyone can speak: if someone has facts for the
rest of the team to absorb, the most polite way to communicate them is
to type them in.

Write an agenda. If nobody cares enough about the meeting to write a
point-form list of what’s supposed to be discussed, the meeting itself
probably doesn’t need to happen.

Include timings in the agenda. Agendas can also help you prevent early
items stealing time from later ones if you include the time to be spent
on each item in the agenda. Your first estimates with any new group
will be wildly optimistic, so revise them upward for subsequent meetings.
However, you shouldn’t plan a second or third meeting because the first
one ran over-time: instead, try to figure out why you’re running over and
fix the underlying problem.

Prioritize. Every meeting is a micro-project, so work should be prioritized
in the same way that it is for other projects: things that will have high
impact but take little time should be done first, and things that will take
lots of time but have little impact should be skipped.

Make one person responsible for keeping things moving. One person
should be tasked with keeping items to time, chiding people who are

263

having side conversations or checking email, and asking people who are
talking too much to get to the point. This person should not do all the
talking; in fact, whoever is in charge will talk less in a well-run meeting
than most other participants.

Require politeness. No one gets to be rude, no one gets to ramble, and
if someone goes off topic, it’s the chair’s job to say, “Let’s discuss that
elsewhere.”

No technology (unless it’s required for accessibility reasons). Insist that
everyone put their phones, tablets, and laptops into politeness mode (i.e.,
closes them). If this is too stressful, let participants hang on to their
electronic pacifiers but turn off the network so that they really are using
them just to take notes or check the agenda.

No interruptions. Participants should raise a finger, put up a sticky note,
or make one of the other gestures people make at high-priced auctions
instead if they want to speak next. If the speaker doesn’t notice you, the
person in charge ought to.

Record minutes. Someone other than the chair should take point-form
notes about the most important pieces of information that were shared,
and about every decision that was made or every task that was assigned
to someone.

Take notes. While other people are talking, participants should take notes
of questions they want to ask or points they want to make. (You’ll be
surprised how smart it makes you look when it’s your turn to speak.)

End early. If your meeting is scheduled for 10:00-11:00, you should aim to
end at 10:55 to give people time to get where they need to go next.

As soon as the meeting is over, the minutes should be circulated (e.g.,
emailed to everyone or posted to a wiki):

People who weren’t at the meeting can keep track of what’s going on.
You and your fellow students all have to juggle assignments from several
other courses while doing this project, which means that sometimes you
won’t be able to make it to team meetings. A wiki page, email message,
or blog entry is a much more efficient way to catch up after a missed
meeting or two than asking a team mate, “Hey, what did I miss?”

Everyone can check what was actually said or promised. More than
once, I’ve looked over the minutes of a meeting I was in and thought,
“Did I say that?” or, “Wait a minute, I didn’t promise to have it ready
then!” Accidentally or not, people will often remember things differently;
writing it down gives team members a chance to correct mistaken or
malicious interpretations, which can save a lot of anguish later on.

People can be held accountable at subsequent meetings. There’s no
point making lists of questions and action items if you don’t follow up on
them later. If you’re using a ticketing system, the best thing to do is to
create a ticket for each new question or task right after the meeting, and

264

update those that are being carried forward. That way, your agenda for
the next meeting can start by rattling through a list of tickets.

[Brow2007] and [Broo2016] have lots of good advice on running meet-
ings, and if you want to “learn, then do”, an hour of training on chairing
meetings is the most effective place to start.

Sticky Notes and Interruption Bingo

Some people are so used to the sound of their own voice that they
will insist on talking half the time no matter how many other people
are in the room. One way to combat this is to give everyone three
sticky notes at the start of the meeting. Every time they speak, they
have to take down one sticky note. When they’re out of notes, they
aren’t allowed to speak until everyone has used at least one, at which
point everyone gets all of their sticky notes back. This ensures that
nobody talks more than three times as often as the quietest person in
the meeting, and completely changes the dynamics of most groups:
people who have given up trying to be heard because they always get
trampled suddenly have space to contribute, and the overly-frequent
speakers quickly realize just how unfair they have been.

Another useful technique is called interruption bingo. Draw a grid,
and label the rows and columns with the participants’ names. Each time
someone interrupts someone else, add a tally mark to the appropriate
cell. Halfway through the meeting, take a moment to look at the results.
In most cases, you will see that one or two people are doing all of the
interrupting, often without being aware of it. After that, saying, “All
right, I’m adding another tally to the bingo card,” is often enough to get
them to throttle back. (Note that this technique is intended to manage
interruptions, not speaking time. It may be completely appropriate
for people with more knowledge of a subject to speak about it more
often in a meeting, but it is almost never appropriate to repeatedly cut
people off.)

Online Meetings

Chelsea Troy’s discussion of why online meetings are often frustrating and
unproductive1 makes an important point: in most online meetings, the first
person to speak during a pause gets the floor. The result? “If you have
something you want to say, you have to stop listening to the person currently
speaking and instead focus on when they’re gonna pause or finish so you
can leap into that nanosecond of silence and be the first to utter something.

1https://chelseatroy.com/2018/03/29/why-do-remote-meetings-suck-so-much/

265

https://chelseatroy.com/2018/03/29/why-do-remote-meetings-suck-so-much/

The format. . . encourages participants who want to contribute to say more
and listen less.”

The solution is to run a text chat beside the video conference where
people can signal that they want to speak, and have the moderator select
people from the waiting list. If the meeting is large or argumentative, this
can be reinforced by having everyone mute themselves, and only allowing
the moderator to unmute people.

The Post Mortem

Every project should end with a post mortem in which you reflect on what
you just accomplished and what you could o better next time. Its aim is not
to point the finger of shame at individuals, although if that has to happen,
the post mortem is the best place for it.

A post mortem is run like any other meeting, but with a few additional
guidelines [Derb2006]:

Get a moderator who wasn’t part of the project and doesn’t have a
stake in it. Otherwise, the meeting will either go in circles, or focus on
only a subset of important topics. In the case of student projects, this
moderator might be the course instructor, or a TA.

Set aside an hour, and only an hour. In my experience, nothing useful is
said in the first ten minutes of anyone’s first post mortem, since people
are naturally a bit shy about praising or damning their own work. Equally,
nothing useful is said after the first hour: if you’re still talking, it’s probably
because one or two people have a lot they want to get off their chests.

Require attendance. Everyone who was part of the project ought to be in
the room for the post mortem. This is more important than you might
think: the people who have the most to learn from the post mortem are
often least likely to show up if the meeting is optional.

Make two lists. When I’m moderating, I put the headings “Do Again” and
“Do Differently” on the board, then do a lap around the room and ask
every person to give me one item (that hasn’t already been mentioned)
for each list.

Comment on actions, rather than individuals. By the time the project is
done, some people simply won’t be able to stand one another. Don’t let
this sidetrack the meeting: if someone has a specific complaint about
another member of the team, require him to criticize a particular event
or decision. “He had a bad attitude” does not help anyone improve their
game.

Once everyone’s thoughts are out in the open, organize them somehow
so that you can make specific recommendations about what to do next time.
This list is one of the two major goals of the post mortem (the other being
to give people a chance to be heard).

266

G A Little Bit of Theory

One of the exercises in educational research is deciding what we mean by
“learning”, which turns out to be pretty complicated once you start looking
beyond the standardized Western classroom. Within the broad scope of
educational psychology, two specific perspectives have primarily influenced
my teaching. The first is cognitivism, which focuses on things like pattern
recognition, memory formation, and recall. It is good at answering low-level
questions, but generally ignores larger issues like, “What do we mean by
‘learning’?” and, “Who gets to decide?” The second is situated learning,
which focuses on bringing people into a community, and recognizes that
teaching and learning are always rooted in who we are and who we aspire
to be. We will discuss it in more detail in Chapter 13.

The Learning Theories website1 and [Wibu2016] have good summaries
of these and other perspectives. Besides cognitivism, those encountered
most frequently include behaviorism (which treats education as stimu-
lus/response conditioning), constructivism (which considers learning an
active process during which learners construct knowledge for themselves),
and connectivism (which holds that knowledge is distributed, that learning
is the process of navigating, growing, and pruning connections, and which
emphasizes the social aspects of learning made possible by the Internet).
It would help if their names were less similar, but setting that aside, none
of them can tell us how to teach on their own because in real life, several
different teaching methods might be consistent with what we currently
know about how learning works. We therefore have to try those methods in
the class, with actual learners, in order to find out how well they balance
the different forces in play.

Doing this is called instructional design. If educational psychology is
the science, instructional design is the engineering. For example, there
are good reasons to believe that children will learn how to read best by
starting with the sounds of letters and working up to words. However, there
are equally good reasons to believe that children will learn best if they are

1http://www.learning-theories.com/

267

http://www.learning-theories.com/

taught to recognize entire simple words like “open” and “stop”, so that they
can start using their knowledge sooner.

The first approach is called “phonics”, and the second, “whole language”.
The whole language approach may seem upside down, but more than a
billion people have learned to read and write Chinese and similar ideogram-
matic languages in exactly this way. The only way to tell which approach
works best for most children, most of the time, is to try them both out. These
studies have to be done carefully, because so many other variables can have
an impact on rules. For example, the teacher’s enthusiasm for the teaching
method may matter more than the method itself, since children will model
their teacher’s excitement for a subject. (With all of that taken into account,
phonics does seem to be better than other approaches [Foor1998].)

As frustrating as the maybes and howevers in education research are, this
kind of painstaking work is essential to dispel myths that can get in the way
of better teaching. One well-known myth2 is that people are visual, auditory,
or kinesthetic learners, and that teaching is more effective when lessons are
designed according to whether they like to see things, hear things, or do
things. This idea is easy to understand, but as [DeBr2015] explains, it is
almost certainly false. Unfortunately, that hasn’t stopped companies from
marketing products based on it to parents, school boards, and the general
public.

Similarly, the learning pyramid that shows we remember 10% of what
we read, 20% of what we hear, and so on? Myth3. The idea that “brain
games” can improve our intelligence, or at least slow its decline in old age?
Also a myth, as are the claims that the Internet is making us dumber or that
young people read less than they used to. Just as we need to clear away our
learners’ misconceptions in order to help them learn, we need to clear away
our own about teaching if we are to teach more effectively.

Notional Machines

The term computational thinking is bandied about a lot, in part because
people can agree it’s important while meaning very different things by it.
I find it more useful to think in terms of getting learners to understand a
notional machine. The term was introduced in [DuBo1986], and means ab-
straction of the structure and behavior of a computational device. According
to [Sorv2013], a notional machine:

• is an idealized abstraction of computer hardware and other aspects of
the runtime environment of programs;

• serves the purpose of understanding what happens during program
execution;

2https://en.wikipedia.org/wiki/Learning_styles#Learning_modalities
3https://www.worklearning.com/2015/01/05/mythical-retention-data-the-corrupted-cone/

268

https://en.wikipedia.org/wiki/Learning_styles#Learning_modalities
https://www.worklearning.com/2015/01/05/mythical-retention-data-the-corrupted-cone/

• is associated with one or more programming paradigms or languages,
and possibly with a particular programming environment;

• enables the semantics of program code written in those paradigms or
languages (or subsets thereof) to be described;

• gives a particular perspective to the execution of programs; and
• correctly reflects what programs do when executed.

For example, my notional machine for Python is:

1. Running programs live in memory, which is divided between a call stack
and a heap.

2. Memory for data is always allocated from the heap.
3. Every piece of data is stored in a two-part structure: the first part says

what type the data is, and the second part is the actual value.
4. Atomic data like Booleans, numbers, and character strings are stored

directly in the second part. These values are never modified after they
are created.

5. The scaffolding for collections like lists and sets are also stored in the
second part, but they store references to other data rather than storing
those values directly. The scaffolding may be modified after it is created,
e.g., a list may be extended or new key/value pairs may be added to a
dictionary.

6. When code is loaded into memory, Python parses it and converts it to
a sequence of instructions that are stored like any other data. (This is
why it’s possible to alias functions and pass them as parameters.)

7. When code is executed, Python steps through the instructions, doing
what each tells it to in turn.

8. Some instructions make Python read data, operate on it, and create
new data.

9. Other instructions make Python jump to other instructions instead of
executing the next one in sequence; this is how conditionals and loops
work.

10. Yet another instruction tells Python to call a function, which means
temporarily switching from one blob of instructions to another.

11. When a function is called, a new stack frame is pushed on the call stack.
12. Each stack frame stores variables’ names and references to data. (Func-

tion parameters are just another kind of variable.)
13. When a variable is used, Python looks for it in the top stack frame. If it

isn’t there, it looks in the bottom (global) frame.
14. When the function finishes, Python erases its stack frame and switches

from its blob of instructions back to the blob that called it. If there isn’t
a "beforehand", the program has finished.

I don’t try to explain all of this at once, but I draw on this mental model
over and over again as I draw pictures, trace execution, and so on. After
about 25 hours of class and 100 hours of work on their own time, I expect
adult learners to be able to understand most of it.

269

H Lesson Design Template

Designing a good course is as hard as designing good software. To help
you, this appendix summarizes a process based on evidence-based teaching
practices:

• It lays out a step-by-step progression to help you figure out what to think
about in what order.

• It provides spaced deliverables so you can re-scope or redirect effort
without too many unpleasant surprises.

• Everything from Step 2 onward goes into your final course, so there is
no wasted effort.

• Writing sample exercises early lets you check that everything you want
your students to do actually works.

This backward design process was developed independently by
[Wigg2005, Bigg2011, Fink2013]. We have slimmed it down by removing
steps related to meeting curriculum guidelines and other institutional
requirements.

Note that the steps are described in order of increasing detail, but the
process itself is always iterative. You will frequently go back to revise earlier
work as you learn something from your answer to a later question or realize
that your initial plan isn’t going to play out the way you first thought.

Step 1: Brainstorming

The first step is to throw together some rough ideas so that you and your
colleagues can make sure your thoughts about the course are aligned. To
do this, write some point-form answers to three or four of the questions
listed below. You aren’t expected to answer all of them, and you may pose
and answer others if you think it’s helpful, but you should always include a
couple of answers to the first.

1. What problem(s) will student learn how to solve?
2. What concepts and techniques will students learn?
3. What technologies, packages, or functions will students use?

271

4. What terms or jargon will you define?
5. What analogies will you use to explain concepts?
6. What heuristics will help students understand things?
7. What mistakes or misconceptions do you expect?
8. What datasets will you use?

You may not need to answer every question for every course, and you
will often have questions or issues we haven’t suggested, but couple of hours
of thinking at this stage can save days of rework later on.

Deliverable: a rough scope for the course that you have agreed with
your colleagues.

Step 2: Who Is This Course For?

“Beginner” and “expert” mean different things to different people, and many
factors besides pre-existing knowledge influence who a course is suitable
for. The second step in designing a course is therefore to figure out who
your audience is. To do this, you should either create some learner personas
(Section 6.1), or (preferably) reference ones that you and your colleagues
have drawn up together.

After you are done brainstorming, you should go through these personas
and decide which of them your course is intended for, and how it will help
them. While doing this, you should make some notes about what specific
prerequisite skills or knowledge you expect students to have above and
beyond what’s in the persona.

Deliverable: brief summaries of who your course will help and how.

Step 3: What Will Learners Do Along the Way?

The best way to make the goals in Step 1 firmer is to write full descriptions
of a couple of exercises that students will be able to do toward the end
of the course. Writing exercises early is directly analogous to test-driven
development1: rather than working forward from a (probably ambiguous)
set of learning objectives, designers work backward from concrete examples
of where their students are going. Doing this also helps uncover technical
requirements that might otherwise not be found until uncomfortably late in
the lesson development process.

To complement the full exercise descriptions, you should also write brief
point-form descriptions of one or two exercises per lecture hour to show
how quickly you expect learners to progress. (Again, these serve as a good
reality check on how much you’re assuming, and help uncover technical

1https://en.wikipedia.org/wiki/Test-driven_development

272

https://en.wikipedia.org/wiki/Test-driven_development

requirements.) One way to create these “extra” exercises is to make a point-
form list of the skills needed to solve the major exercises and create an
exercise that targets each.

Deliverable: 1–2 fully explained exercises that use the skills the student
is to learn, plus half a dozen point-form exercise outlines.

Note: be sure to include solutions with example code so that you can
check that your software can do everything you need.

Step 4: How Are Concepts Connected?

In this stage, you put the exercises in a logical order then derive a point-form
course outline for the entire course from them. This is also when you will
consolidate the datasets your formative assessments have used.

Deliverable: a course outline.
Notes:

• The final outline should be at the lecture and formative assessment level,
e.g., one major bullet point for each hour of work with 3–4 minor bullet
points for the episodes in that hour.

• It’s common to change assessments in this stage so that they can build
on each other.

• You are likely to discover things you forgot to list earlier during this
stage, so don’t be surprised if you have to double back a few times.

Step 5: Course Overview

You can now write a course overview consisting of:

• a one-paragraph description (i.e., a sales pitch to students)
• half a dozen learning objectives
• a summary of prerequisites

Doing this earlier often wastes effort, since material is usually added,
cut, or moved around in earlier steps.

Deliverable: course description, learning objectives, and prerequisites.

Reminder

As noted at the start, this process is described as a sequence, but in practice
you will loop back repeatedly as each stage informs you of something you
overlooked.

273

I Checklists for Events

[Gawa2007] popularized the idea that using checklists can save lives (and
make many other things better too). The results of recent studies have
been more nuanced [Avel2013, Urba2014], but we still find them useful,
particularly when bringing new instructors onto a team.

The checklists below are used before, during, and after instructor train-
ing events, and can easily be adapted for end-learner workshops as well.
We recommend that every group build and maintain its own checklists
customized for its instructors’ and learners’ needs.

Scheduling the Event

1. Decide if it will be in person, online for one site, or online for several
sites.

2. Talk through expectations with the host(s) and make sure that everyone
agrees on who is covering travel costs.

3. Determine who is allowed to take part: is the event open to all comers,
restricted to members of one organization, or something in between?

4. Arrange instructors.
5. Arrange space, including breakout rooms if needed.
6. Choose dates. If it is in person, book travel.
7. Get names and email addresses of attendees from host(s).
8. Make sure they are added to the registration system.

Setting Up

1. Set up a web page with details on the workshop, including date, loca-
tion, and a list of what participants need to bring.

2. Check whether any attendees have special needs.
3. If the workshop is online, test the video conferencing link.
4. Make sure attendees will all have network access.
5. Create an Etherpad or Google Doc for shared notes.
6. Email attendees a welcome message that includes a link to the workshop

home page, background readings, and a description of any prerequisite
tasks.

275

At the Start of the Event

1. Remind everyone of the code of conduct.
2. Collect attendance.
3. Distribute sticky notes.
4. Collect any relevant online account IDs.

At the End of the Event

1. Update attendance records. Be sure to also record who participated as
an instructor or helper.

2. Administer a post-workshop survey.
3. Update the course notes and/or checklists.

Travel Kit

Here are a few things instructors take with them when they travel to teach:

• sticky notes
• cough drops
• comfortable shoes
• a small notepad
• a spare power adapter
• a spare shirt
• deodorant
• a variety of video adapters
• laptop stickers
• a toothbrush or some mouthwash
• a granola bar or some other emergency snack
• Eno or some other antacid (because road food)
• business cards
• a printed copy of the notes, or a tablet or other device
• an insulated cup for tea/coffee
• spare glasses/contacts
• a notebook and pen
• a portable WiFi hub (in case the room’s network isn’t working)
• extra whiteboard markers
• a laser pointer
• a packet of wet wipes (because spills happen)
• USB drives with installers for various operating systems
• running shoes, a bathing suit, a yoga mat, or whatever else you exercise

in or with

276

J Presentation Rubric

This rubric is designed to assess 5–10 minute recordings of people teaching
with slides, live coding, or a mix of both. You can use it as a starting point
for creating a rubric of your own.

Opening Yes Iffy No N/A
Exists (use N/A for other responses if not) © © © ©
Good length (10–30 seconds) © © © ©
Introduces self © © © ©
Introduces topics to be covered © © © ©
Describes prerequisites © © © ©
Content
Clear goal/narrative arc © © © ©
Inclusive language © © © ©
Authentic tasks/examples © © © ©
Teaches best practices/uses idiomatic code © © © ©
Steers a path between the Scylla of jargon and the
Charybdis of over-simplification

© © © ©

Delivery
Clear, intelligible voice (use “Iffy” or “No” for strong
accent)

© © © ©

Rhythm: not too fast or too slow, no long pauses or
self-interruption, not obviously reading from a script

© © © ©

Self-assured: does not stray into the icky tarpit of un-
certainty or the dungheap of condescension

© © © ©

Slides
Exist (use N/A for other responses if not) © © © ©
Slides and speech complement one another (dual cod-
ing)

© © © ©

Readable fonts and colors/no overwhelming slabs of
text

© © © ©

Frequent change (something happens on screen at least
every 30 seconds)

© © © ©

Good use of graphics © © © ©
Live Coding
Used (use N/A for other responses if not) © © © ©

277

Code and speech complement one another (i.e., in-
structor doesn’t just read code aloud)

© © © ©

Readable fonts and colors/right amount of code on the
screen at a time

© © © ©

Proficient use of tools © © © ©
Highlights key features of code © © © ©
Dissects errors © © © ©
Closing
Exists (use N/A for other responses if it doesn’t) © © © ©
Good length (10–30 seconds) © © © ©
Summarizes key points © © © ©
Outlines next steps © © © ©
Overall
Points clearly connected/logical flow © © © ©
Make the topic interesting (i.e., not boring) © © © ©
Knowledgeable © © © ©

278

K Teamwork Rubric

This rubric is designed to assess individual performance within a team.

Communication Yes Iffy No N/A
Listens attentively to others without interrupting. © © © ©
Clarifies with others have said to ensure understanding. © © © ©
Articulates ideas clearly and concisely. © © © ©
Gives good reasons for ideas. © © © ©
Wins support from others. © © © ©
Decision Making
Analyzes problems from different points of view. © © © ©
Applies logic in solving problems. © © © ©
Offers solutions based on facts rather than “gut feel” or
intuition.

© © © ©

Solicits new ideas from others. © © © ©
Generates new ideas. © © © ©
Accepts change. © © © ©
Collaboration
Acknowledges issues that the team needs to confront
and resolve.

© © © ©

Encourages ideas and opinions even when they differ
from his/her own.

© © © ©

Works toward solutions and compromises that are ac-
ceptable to all involved.

© © © ©

Shares credit for success with others. © © © ©
Encourages participation among all participants. © © © ©
Accepts criticism openly and non-defensively. © © © ©
Cooperates with others. © © © ©
Self-Management
Monitors progress to ensure that goals are met. © © © ©
Puts top priority on getting results. © © © ©
Defines task priorities for work sessions. © © © ©
Encourages others to express their views even when
they are contrary.

© © © ©

Stays focused on the task during meetings. © © © ©
Uses meeting time efficiently. © © © ©
Suggests ways to proceed during work sessions. © © © ©

279

L Pre-Assessment Questionnaire

This questionnaire is designed to help teachers gauge the prior knowledge
of learners in an introductory JavaScript programming workshop. You can
use it as a starting point for creating a rubric of your own.

1. Which of these best describes your previous experience with program-
ming in general?
• I have none.
• I have written a few lines now and again.
• I have written programs for my own use that are a couple of pages

long.
• I have written and maintained larger pieces of software.

2. Which of these best describes your previous experience with program-
ming in JavaScript?
• I have none.
• I have written a few lines now and again.
• I have written programs for my own use that are a couple of pages

long.
• I have written and maintained larger pieces of software.

3. Which of these best describes how easily you could write JavaScript to
find the largest number in a list?
• I wouldn’t know where to start.
• I could struggle through by trial and error with a lot of web searches.
• I could do it quickly with little or no use of external help.

4. Which of these best describes how easily you could write JavaScript to
capitalize all of the titles in a web page?
• I wouldn’t know where to start.
• I could struggle through by trial and error with a lot of web searches.
• I could do it quickly with little or no use of external help.

5. Why do you want to take this training course?

281

M Design Notes

This design follows the backward design process described in Chapter 6.

Brainstorming

These questions and answers provide a rough scope for the material.

1. What problems will learners learn how to solve?
1. How people learn and what that tells us about how best to teach

them (educational psychology, cognitive load, study skills).
2. How to design and deliver instruction in computing skills (back-

ward curriculum design, some pedagogical content knowledge for
computing).

3. How to deliver lessons (teaching as a performance art, live coding,
motivation and demotivation, and automation).

4. How to grow a teaching community (community organization and
marketing).

2. What is out of scope?
1. How to teach children or people with special learning needs. Much

of what’s in this material applies to those learners, but they have
different or extra needs.

2. How to rigorously assess the impact of training. Informal self-
assessment will be included, but we will not try to explain how to
do publishable scientific research in education.

3. How to design and deliver entire degree programs and other ex-
tended curriculum. Again, much of what’s in this material applies,
but the extra needs of large-scale curriculum design is out of scope.

3. What concepts and techniques will learners encounter?
1. 7±2 and chunking.
2. Authentic tasks with tangible artifacts.
3. Bloom’s Taxonomy, Fink’s Taxonomy, and Piaget’s development

stage theory.
4. Branding.
5. Cognitive development from novice to competent to expert.

283

6. Cognitive load.
7. Collaborative lesson development.
8. Concept mapping.
9. Designing assessments with diagnostic power.

10. Dunning-Kruger effect.
11. Expert blind spot.
12. Externalized cognition.
13. Fixed vs. growth mindset (and critiques of it).
14. Formative vs. summative assessment.
15. Governance models of community organizations.
16. Inquiry-based learning (and critiques of it).
17. Intrinsic vs. extrinsic motivation.
18. Jugyokenkyu (lesson study).
19. Learner personas.
20. Legitimate peripheral participation in a community of practice.
21. Live coding (teaching as a performance art).
22. Pedagogical content knowledge (PCK) and technological pedagogi-

cal and content knowledge (TPACK).
23. Peer instruction.
24. Reflective (deliberate) practice.
25. Backward design.
26. Stereotype threat (and critiques of it).
27. Working memory vs. persistent memory.

4. What mistakes or misconceptions will they have?
1. Children and adults learn the same way.
2. Computing education should be for and about computer science.
3. Programming skill is innate.
4. Student evaluations of courses are indicative of learning outcomes.
5. Teaching ability is innate.
6. The best way to teach is to throw people in at the deep end.
7. The best way to teach is to use “real” tools right from the start.
8. Visual-auditory-kinesthetic (VAK) learning styles are real.
9. Women just don’t like programming or innately have less aptitude.

10. Getting a (better) job is the main reason someone should learn
how to program.

5. In what contexts will this material be used?
1. Primary: an intensive weekend workshop for people in tech who

want to volunteer with grassroots get-into-coding initiatives.
2. Secondary: self-study or guided study by such people.
3. Secondary: a one-semester undergraduate course for computer

science majors interested in education.

284

Intended Audience

These learner personas clarify what readers are interested in and what can be
assumed about their prior knowledge.

Emily trained as a librarian, and now works as a web designer and project
manager in a small consulting company. In her spare time, she helps
run web design classes for women entering tech as a second career. She
is now recruiting colleagues to run more classes in her area using the
lessons that she has created, and wants to know how to grow a volunteer
teaching organization.

Moshe is a professional programmer with two teenage children whose
school doesn’t offer programming classes. He has volunteered to run a
monthly after-school programming club, and while he frequently gives
presentations to colleagues, he has no experience designing lessons. He
wants to learn how to build effective lessons in collaboration with others,
and is interested in turning his lessons into a self-paced online course.

Samira is an undergraduate in robotics who is thinking about becoming a
full-time teacher after she graduates. She wants to help teach weekend
workshops for undergraduate women, but has never taught an entire class
before, and feels uncomfortable teaching things that she’s not an expert
in. She wants to learn more about education in general in order to decide
if it’s for her.

Gene is a professor of computer science whose research area is operating
systems. They have been teaching undergraduate classes for six years, and
increasingly believe that there has to be a better way. The only training
available through their university’s teaching and learning center relates
to posting assignments and grades in the learning management system,
so they want to find out what else they ought to be asking for.

Common elements:

• A variety of technical backgrounds and skills.
• May or may not have some teaching experience.
• No formal training in teaching, lesson design, or community organiza-

tion.
• More likely to teach in free-range settings often than in institutional class-

rooms with required homework, final exams, and externally-mandated
curriculum.

• Focused on teenagers and adults rather children.
• Limited time and resources (either because they are volunteers, or be-

cause their institution considers teaching a secondary responsibility).

Learning contexts:

Emily will take part in a weekly online reading group with her volunteers.

285

Moshe will cover part of this book in a two-day weekend workshop and
study the rest on his own.

Samira will use this book in a one-semester undergraduate course with
assignments, a project, and a final exam.

Gene will read the book on their own in their office or while commuting,
wishing all the while that universities did more to support high-quality
teaching.

Exercises

These formative exercises summarize what learners will be able to do with their
new knowledge. The finished book will include others as well.

1. Create multiple choice questions whose incorrect answers have diag-
nostic power.

2. Give feedback on a recorded teaching episode and compare points with
expert feedback.

3. Create a Parsons Problem.
4. Create a short debugging exercise.
5. Create a short execution tracing exercise.
6. Explain their personal motivation for teaching.
7. Explain their community of practice’s aims and conventions.
8. Explain the difference between an oversight board and a governance

board.
9. Design an hour-long lesson using backward design.

10. Describe the pros and cons of standardized testing.
11. Create learner personas for their intended students.
12. Write and critique learning objectives for an hour-long lesson.
13. Write and critique a short value proposition for a class they intend to

offer.
14. Teach a short lesson using live coding and critique a recording of it.
15. Create a short video lesson and critique it.
16. Construct a short series of faded examples that illustrate a problem-

solving pattern in programming.
17. Describe ways in which they differ from their intended learners.
18. Create and critique an elevator pitch for a course they intend to teach.
19. Write a “cold call” email to solicit support for what they intend to teach.
20. Create a concept map for a topic they intend to teach.
21. Explain six strategies students can use to learn more effectively.
22. Analyze and critique the accessibility of a short online lesson.
23. Analyze and critique the inclusivity of a short lesson.
24. Create and critique a non-programming exercise to use in a program-

ming class.
25. Describe the relative merits of block-based and text-based environments

for introductory programming classes for adults.

286

26. Create a one-to-one matching exercise for use in a class they intend to
teach.

27. Create a diagram labelling exercise for use in a class they intend to
teach.

28. Write and submit an improvement or extension to an existing lesson
and review a peer’s submission.

29. Describe the pros and cons of collaborative note-taking.
30. Describe the pros and cons of gamification in online learning.
31. Create and critique a short questionnaire for assessing learners’ prior

knowledge.
32. Conduct a demonstration lesson using peer instruction.
33. Describe ways in which computing is unwelcoming to or unaccepting

of people from diverse backgrounds.
34. Demonstrate several ways to ensure that an instructor’s attention is

fairly distributed through a class.
35. Describe the pros and cons of in-person, automated, and hybrid teach-

ing strategies.
36. Write and critique automated tests for a short programming exercise.

Outline

Each major section can be covered in detail in 2–3 weeks in a conventional
classroom format, or in less detail in one full day in an intensive workshop
format.

1. Introduction
2. Learning

1. Building Mental Models
2. Expertise and Memory
3. Cognitive Load
4. Effective Learning

3. Designing
1. A Lesson Design Process
2. Pedagogical Content Knowledge

4. Delivering
1. Teaching as a Performance Art
2. Live Coding
3. Motivation and Demotivation
4. Automation
5. Hybrid Models

5. Organizing
1. Awareness
2. Operations
3. Building Community

287

Course Overview

Brief Description

Teaching isn’t magic: good teachers are simply people who have learned
how to design lessons to achieve concrete goals, how to get and use feedback
from learners, and how to work well with other teachers. This book will
show you how to do these things and more, and will introduce you to some
of the research that explains why some things work and some things don’t. It
is primarily intended for people in tech with no formal training in teaching
who want to help adults learn how to create web sites, write programs,
and analyze data, but the ideas apply equally well to other groups in other
settings.

Learning Objectives

Learners will be able to. . .

1. Explain the cognitive changes that occur as people go from novice to
competent to expert and how best to teach each group.

2. Explain how to design, construct, and maintain lessons in a systematic,
collaborative way.

3. Design exercises to help correct key misconceptions that learners have
about computing.

4. Summarize key elements of pedagogical content knowledge related to
computing and other technical skills.

5. Compare and contrast teaching with other performance arts and partic-
ipate in structured critiques of live teaching.

6. Compare and contrast interactive teaching, automated teaching, and
hybrid models.

7. Describe factors that motivate or demotivate adult learners and how to
take those into account when teaching.

8. Describe ways in which members of different groups are made to feel
unwelcome or excluded in computing and what can be done to make
computing more inclusive.

9. Explain the purpose and value of their teaching and of their community
of practice.

10. Be a productive member of a community of teaching practice.

Prerequisites

Some exercises will assume a small amount of programming knowledge:
readers should know how to loop over the elements of a list, how to take ac-
tion using an if-else statement, and how to write and call a simple function.

288

	Contents
	Introduction
	Who You Are
	What to Read Instead
	History
	Why Learn to Program?
	Have a Code of Conduct
	Acknowledgments
	Exercises

	Learning
	Building Mental Models
	Are People Learning?
	Exercises

	Expertise and Memory
	Concept Maps
	Seven Plus or Minus Two
	Pattern Recognition
	Becoming an Expert
	Exercises

	Cognitive Load
	Split Attention
	Minimal Manuals
	Exercises

	Individual Learning
	Six Strategies
	Time Management
	Peer Assessment
	Exercises

	Lesson Design
	A Lesson Design Process
	Learner Personas
	Learning Objectives
	Maintainability
	Exercises

	Actionable Approximations of the Truth
	How Do Novices Program?
	How Do Novices Debug and Test?
	What Misconceptions Do Novices Have?
	What Mistakes Do Novices Make?
	What Are We Teaching Them Now?
	Do Languages Matter?
	Does Better Feedback Help?
	What Else Can We Do to Help?
	Exercises

	Teaching
	Teaching as a Performance Art
	Lesson Study
	Giving and Getting Feedback on Teaching
	How to Practice Performance
	Live Coding
	Exercises

	In the Classroom
	Enforce the Code of Conduct
	Peer Instruction
	Teach Together
	Assess Prior Knowledge
	Plan for Mixed Abilities
	Pair Programming
	Take Notes…Together?
	Sticky Notes
	Never a Blank Page
	Setting Up Your Learners
	Other Teaching Practices
	Limit Innovation
	Exercises

	Motivation and Demotivation
	Authentic Tasks
	Demotivation
	Accessibility
	Inclusivity
	Exercises

	Teaching Online
	MOOCs
	Video
	Flipped Classrooms
	Life Online
	Exercises

	Exercise Types
	The Classics
	Tracing
	Diagrams
	Automatic Grading
	Higher-Level Thinking
	Exercises

	Organizing
	Building Community
	Learn, Then Do
	Three Steps
	Retention
	Governance
	Final Thoughts
	Exercises

	Marketing
	What Are You Offering to Whom?
	Branding and Positioning
	The Art of the Cold Call
	A Final Thought
	Exercises

	Partnerships
	Working With Schools
	Working Outside Schools
	Final Thoughts
	Exercises

	Why I Teach
	Bibliography

	Additional Material
	License
	Citation
	Joining Our Community
	Contributor Covenant
	Using This Material
	Contributing and Maintaining

	Code of Conduct
	Glossary
	Meetings, Meetings, Meetings
	A Little Bit of Theory
	Lesson Design Template
	Checklists for Events
	Presentation Rubric
	Teamwork Rubric
	Pre-Assessment Questionnaire
	Design Notes

